【題目】如圖,在RtABC中,∠ACB=90°,∠A=40°ABC的外角∠CBD的平分線BEAC的延長(zhǎng)線于點(diǎn)E,點(diǎn)FAC延長(zhǎng)線上的一點(diǎn),連接DF.

(1)求∠CBE的度數(shù);

(2)若∠F=25°,求證:BEDF.

【答案】1)∠CBD=65°;(2)證明見(jiàn)解析.

【解析】

1)先根據(jù)直角三角形兩銳角互余求出∠ABC=90°-∠A=50°,由鄰補(bǔ)角定義得出∠CBD=130°.再根據(jù)角平分線定義即可求出∠CBE=65°;
2)先根據(jù)三角形外角的性質(zhì)得出∠CEB=90°-65°=25°,再根據(jù)∠F=25°,即可得出BEDF

解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°

∴∠ABC=90°-A=50°,
∴∠CBD=130°
BE是∠CBD的平分線,
∴∠CBE=CBD=65°;

2)∵∠ACB=90°,∠CBE=65°
∴∠CEB=90°-65°=25°
又∵∠F=25°,
∴∠F=CEB=25°,
DFBE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)出售一批進(jìn)價(jià)為2元的賀卡,在市場(chǎng)營(yíng)銷中發(fā)現(xiàn)此商品的日銷售單價(jià)x(元)與日銷售量y(個(gè))之間有如下關(guān)系:

日銷售單價(jià)x(元)

3

4

5

6

日銷售量y(個(gè))

20

15

12

10

1)猜測(cè)并確定yx之間的函數(shù)關(guān)系式,并畫(huà)出圖象;

2)設(shè)經(jīng)營(yíng)此賀卡的銷售利潤(rùn)為W元,求出Wx之間的函數(shù)關(guān)系式,

3)若物價(jià)局規(guī)定此賀卡的售價(jià)最高不能超過(guò)10元/個(gè),請(qǐng)你求出當(dāng)日銷售單價(jià)x定為多少時(shí),才能獲得最大日銷售利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖(1),已知:在中,,,直線經(jīng)過(guò)點(diǎn),直線,直線,垂足分別為點(diǎn)、.證明:

(2)如圖(2),將(1)中的條件改為:在中,,、三點(diǎn)都在直線上,且,其中為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論是否仍然成立?如成立;請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

3)拓展與應(yīng)用:如圖(3),是直線上的兩動(dòng)點(diǎn)、、三點(diǎn)互不重合),點(diǎn)平分線上的一點(diǎn),且均為等邊三角形,連接,若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)欲購(gòu)進(jìn)一種商品,當(dāng)購(gòu)進(jìn)這種商品至少為10kg,但不超過(guò)30kg時(shí),成本y(元/kg)與進(jìn)貨量x(kg)的函數(shù)關(guān)系如圖所示.

(1)求y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍.

(2)若該商場(chǎng)購(gòu)進(jìn)這種商品的成本為9.6元/kg,則購(gòu)進(jìn)此商品多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】補(bǔ)全解答過(guò)程:

已知:如圖,直線ABCD,直線EF與直線AB、CD分別交于點(diǎn)G、HGM平分∠FGB,∠3=60°,求∠1的度數(shù)。

:EFCD交于點(diǎn)H(已知)

∴∠3=4(_______________)

∵∠3=60°(已知)

∴∠4=60°(______________)

ABCD,EFABCD交于點(diǎn)G、H(已知)

∴∠4+FGB=180°(______________)

∴∠FGB=______°

GM平分∠FGB(已知)

∴∠1=_____°(______________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問(wèn)題

(1)在圖中建立正確的平面直角坐標(biāo)系;

(2)根據(jù)所建立的坐標(biāo)系,寫(xiě)出BC的坐標(biāo);

(3)計(jì)算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,A(a,0),C(b,2),過(guò)C作CBx軸,且滿足(a+b)2+=0.

(1)求三角形ABC的面積.

(2)若過(guò)B作BDAC交y軸于D,且AE,DE分別平分CAB,ODB,如圖2,求AED的度數(shù).

(3)在y軸上是否存在點(diǎn)P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:∠A=1,∠2+3=180°,∠BDE=65°,

1ABDF平行嗎?說(shuō)明理由;

2)求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),與x軸相交于點(diǎn)C.已知tan∠BOC= ,點(diǎn)B的坐標(biāo)為(m,n).

(1)求反比例函數(shù)的解析式;
(2)請(qǐng)直接寫(xiě)出當(dāng)x<m時(shí),y2的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案