【題目】如圖,△ABC與△AFD為等腰直角三角形,∠FAD=∠BAC=90°,點D在BC上,則:
(1)求證:BF=DC.
(2)若BD=AC,則求∠BFD的度數(shù).
【答案】(1)見解析;(2)67.5°.
【解析】
(1)先根據(jù)等腰直角三角形的性質(zhì)得出AB=AC,AF=AD,∠FAD=∠BAC=90°,則有∠BAF=∠CAD,即可利用SAS證明△ABF≌△ACD,則結(jié)論可證;
(2)先根據(jù)等腰直角三角形的性質(zhì)和三角形內(nèi)角和定理求出的度數(shù),然后由△ABF≌△ACD得出∠ABF=∠ACD=45°,最后利用∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF即可求解.
(1)∵△ABC與△AFD為等腰直角三角形
∴AB=AC,AF=AD,∠FAD=∠BAC=90°,
∴∠BAF=∠CAD,且AB=AC,AF=AD
∴△ABF≌△ACD(SAS)
∴BF=DC
(2)∵△ABC與△AFD為等腰直角三角形
∴∠ABC=∠ACB=∠ADF=45°
∵AB=AC=BD
∴∠BDA=∠BAD=67.5°
∴∠BDF=22.5°
∵△ABF≌△ACD,
∴∠ABF=∠ACD=45°
∴∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF=67.5°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;
(1)直接寫出圖中∠AOC的對頂角為 ,∠BOE的鄰補角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有、兩種型號的客車共20輛,它們的載客量、每天的租金如下表所示.已知在20輛客車都坐滿的情況下,共載客720人.
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
(1)求、兩種型號的客車各有多少輛?
(2)某中學(xué)計劃租用、兩種型號的客車共8輛,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學(xué)租車的總費用不超過4600元. 求最多能租用多少輛A型號客車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵市民節(jié)約用電,某市對居民用電實行“階梯收費”(總電費=第一階梯電費+第二階梯電費).規(guī)定:用電量不超過200度按第一階梯電價收費,超過200度的部分按第二階梯電價收費.如圖是張磊家2018年1月和3月所交電費的收據(jù),則該市規(guī)定的第一階梯電價和第二階梯電價分別為每度( 。
A. 0.5元、0.6元 B. 0.4元、0.5元 C. 0.3元、0.4元 D. 0.6元、0.7元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y= 的圖象經(jīng)過點(﹣ ,2),則函數(shù)y=kx﹣2的圖象不經(jīng)過第幾象限( )
A.一
B.二
C.三
D.四
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用熱氣球探測器測量大樓AB的高度,從熱氣球P處測得大樓B的俯角為37°,大樓底部A的俯角為60°,此時熱氣球P離底面的高度為120m.試求大樓AB的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,對角線 AC 與 BD 相交于點 O ,點 E , F 分別為 OB , OD 的中點,延長 AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當(dāng) AB 與 AC 滿足什么數(shù)量關(guān)系時,四邊形 EGCF 是矩形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com