【題目】如圖,在中,AD是BC邊上的高,。
(1)求證:AC=BD
(2)若,求AD的長。
【答案】(1)證明見解析;(2)8
【解析】
(1)由于tanB=cos∠DAC,所以根據正切和余弦的概念證明AC=BD;
(2)設AD=12k,AC=13k,然后利用題目已知條件即可解直角三角形.
(1)證明:∵AD是BC上的高,
∴AD⊥BC,
∴∠ADB=90°,∠ADC=90°,
在Rt△ABD和Rt△ADC中,
∵tanB=,cos∠DAC=,
又∵tanB=cos∠DAC,
∴=,
∴AC=BD;
(2)在Rt△ADC中,sinC=,
故可設AD=12k,AC=13k,
∴CD==5k,
∵BC=BD+CD,又AC=BD,
∴BC=13k+5k=18k,
由已知BC=12,
∴18k=12,
∴k=,
∴AD=12k=12×=8.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=4cm,F是弦BC的中點,∠ABC=60°.若動點E以2cm/s的速度從A點出發(fā)沿著A→B→A的方向運動,設運動時間為t(s)(0≤t<6),連接EF,當△BEF是直角三角形時,t的值為___________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,的三個頂點都在格點上,點的坐標為,請解答下列問題:
(1)畫出關于軸對稱的,點的坐標為______;
(2)在網格內以點為位似中心,把按相似比放大,得到,請畫出;若邊上任意一點的坐標為,則兩次變換后對應點的坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某景區(qū)平面圖如圖1所示,為邊界上的點.已知邊界是一段拋物線,其余邊界均為線段,且,拋物線頂點到的距離.以所在直線為軸,所在直線為軸,建立平面直角坐標系.
求邊界所在拋物線的解析式;
如圖2,該景區(qū)管理處欲在區(qū)域內圍成一個矩形場地,使得點在邊界上,點在邊界上,試確定點的位置,使得矩形的周長最大,并求出最大周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,以BC為底邊向正方形外部作等腰直角三角形BCE,連接AE,分別交BD,BC于點F,G,則下列結論:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正確的有( ).
A.①③B.②④C.①②D.③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點,的長為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,AE⊥BD于點E,點P是邊AD上一點.
(1)若BP平分∠ABD,交AE于點G,PF⊥BD于點F,如圖①,證明四邊形AGFP是菱形;
(2)若PE⊥EC,如圖②,求證:AEAB=DEAP;
(3)在(2)的條件下,若AB=1,BC=2,求AP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(2,2),點P在直線y=﹣x上運動,∠PAB=90°,∠APB=30°,在點P運動的過程中OB的最小值為( 。
A.3.5B.2C.D.2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com