【題目】在△ABC,AB=AC,D為射線CB上一個動點(不與BC重合),AD為一邊在AD的右側(cè)作△ADE,使AD=AE,DAE=BAC,過點EEFBC,交直線AC于點F,連接CE.

⑴如圖1,若∠BAC=60°,求證:△CEF是等邊三角形.

⑵若∠BAC60°.

①如圖2,當點D在線段CB上移動時,判斷△CEF為等腰三角形并證明;

②當點D在線段CB的延長線上移動時,CEF是什么三角形?請你在圖3中畫出相應的圖形并直接寫出結(jié)論(不必證明).

【答案】(1)見解析;(2)①證明見解析;②△CEF為等腰三角形,證明見解析

【解析】

(1)根據(jù)題意推出△ABC為等邊三角形,然后通過求證△ABD≌△ACE,結(jié)合平行線的性質(zhì),即可證得結(jié)論;

(2)①根據(jù)(1)的推理依據(jù),求證△ABD≌△ACE,結(jié)合平行線的性質(zhì),即可證得結(jié)論;

②根據(jù)題意畫出圖形,利用(1)的推理依據(jù),求證△ABD≌△ACE,再利用等角的補角相等,,結(jié)合平行線的性質(zhì),即可證得結(jié)論.

證明:⑴ AB=AC,∠BAC=60

∴△ABC為等邊三角形,

在△ABD和△ACE:

BAD=60-DAC

CAE=60O-DAC

BAD=CAE

又∵AB=AC,AD=AE

∴△ABD≌△ACE

∴∠ACE= ABD=60

又∵ EFBC

∴∠EFC= ACB=60

∴∠FEC=60

∴△CEF是等邊三角形

①△CEF為等腰三角形,理由如下:

AB=AC

∴∠ABC=ACB

在△ABD和△ACE:

BAD=BAC-DAC

CAE=DAE-DAC

而∠DAE=BAC

BAD=CAE

又∵AB=AC,AD=AE

∴△ABD≌△ACE

∴∠ABC=ACE

又∵EFBC

EFC= ACB

而∠ABC=ACB

∴∠EFC= ECF

所以,△CEF為等腰三角形.

②當點D在線段CB的延長線上時 ,

CEF為等腰三角形,如圖3

理由如下:

AB=AC

ABC=ACB

在△ABD和△ACE:

BAD=DAE -BAE

CAE=BAC -BAE

而∠DAE=BAC

BAD=CAE

又∵AB=AC,AD=AE

∴△ABD≌△ACE

∴∠ABD=ACE

∴∠ABC=ECF (等角的補角相等)

又∵EFBC

∴∠EFC= ACB

而∠ABC=ACB

∴∠EFC= ECF

所以,△CEF為等腰三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).

(1)圖2中的陰影部分的面積為  ;

(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;

(3)根據(jù)(2)中的結(jié)論,若x+y=7,xy=,則x﹣y=  ;

(4)實際上通過計算圖形的面積可以探求相應的等式.根據(jù)圖3,寫出一個因式分解的等式 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(十九),用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、46,且相鄰兩木條的夾角均可調(diào)整。若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲的距離之最大值為何?

(A) 5 (B) 6 (C) 7 (D) 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017貴州省遵義市)如圖,拋物線a<0,ab為常數(shù))與x軸交于A、C兩點,與y軸交于B點,直線AB的函數(shù)關(guān)系式為

(1)求該拋物線的函數(shù)關(guān)系式與C點坐標;

(2)已知點Mm,0)是線段OA上的一個動點,過點Mx軸的垂線l分別與直線AB和拋物線交于DE兩點,當m為何值時,BDE恰好是以DE為底邊的等腰三角形?

(3)在(2)問條件下,當BDE恰好是以DE為底邊的等腰三角形時,動點M相應位置記為點M,將OM繞原點O順時針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在90°之間);

①探究:線段OB上是否存在定點PP不與OB重合),無論ON如何旋轉(zhuǎn),始終保持不變,若存在,試求出P點坐標;若不存在,請說明理由;

②試求出此旋轉(zhuǎn)過程中,(NA+NB)的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,兩點分別在邊、上,,相交于點,若的面積為,則的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB60°,點MN分別是射線OA,OB上的動點,OP平分∠AOB,OP8,當PMN周長取最小值時,OMN的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線軸交于、兩點(點在點左側(cè)),是拋物線外一點,在拋物線的對稱軸上存在一點,使得值最大,則點坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面內(nèi),給定∠AOB=60°,及OB邊上一點C,如圖所示.到射線OA,OB距離相等的所有點組成圖形G,線段OC的垂直平分線交圖形G于點D,連接CD

1)依題意補全圖形;直接寫出∠DCO的度數(shù);

2)過點DOD的垂線,交OA于點E,OB于點F.求證:CF=DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃在總費用2300元的限額內(nèi)租用客車送234名學生和6名教師集體外出活動,每輛客車上至少要有1名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.

甲種客車

乙種客車

載客量/(/)

45

30

租金/(/)

400

280

(1)共需租多少輛客車?

(2)請給出最節(jié)省費用的租車方案.

查看答案和解析>>

同步練習冊答案