【題目】已知:在△ABC中,∠B=∠C,D,E分別是線段BC,AC上的一點,且ADAE,

1)如圖1,若∠BAC90°,DBC中點,則∠2的度數(shù)為_____;

2)借助圖2探究并直接寫出∠1和∠2的數(shù)量關(guān)系_____

【答案】22.5 122

【解析】

1)根據(jù)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和,∠AED=∠EDC+C,∠ADC=∠B+BAD,再根據(jù)等邊對等角的性質(zhì)∠B=∠C,∠ADE=∠AED,進(jìn)而得出∠BAD2CDE

2)根據(jù)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和,∠AED=∠EDC+C,∠ADC=∠B+BAD,再根據(jù)等邊對等角的性質(zhì)∠B=∠C,∠ADE=∠AED,進(jìn)而得出∠BAD2CDE

解:(1)∠AED=∠CDE+C,∠ADC=∠B+BAD,

ADAE,

∴∠AED=∠ADE,

∵∠B=∠C,∠BAC90°,DBC中點,

∴∠BAD45°,

∴∠B+BAD=∠EDC+C+CDE,

即∠BAD2CDE

∴∠2225°;

2)∠AED=∠CDE+C,∠ADC=∠B+BAD,

ADAE,

∴∠AED=∠ADE

ABAC,

∴∠B=∠C,

∴∠B+BAD=∠EDC+C+CDE,

即∠BAD2CDE,∠122

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關(guān)于y軸的對稱點P′在反比例函數(shù)yk≠0)的圖象上.

1)求反比例函數(shù)的解析式;

2)直接寫出當(dāng)y4x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,拋物線的對稱軸是且經(jīng)過、兩點,與軸的另一交點為點,連結(jié)

(1)填空:點、點和點的坐標(biāo)分別為________,________,________;

(2)求證:;

(3)求拋物線解析式;

(4)若點為直線上方的拋物線上的一點,連結(jié),求面積的最大值,并求出此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是根據(jù)九年級某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計圖,下面關(guān)于該班50名同學(xué)一周鍛煉時間的說法錯誤的是( 。

A.平均數(shù)是6

B.中位數(shù)是6.5

C.眾數(shù)是7

D.平均每周鍛煉超過6小時的人數(shù)占該班人數(shù)的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON30°,點A1、A2、A3、……在射線ON上,點B1、B2、B3……在射線OM上,A1B1A2A2B2A3、A3B3A4……均為等邊三角形,若OA11,則A2019B2019A2020的邊長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形方格紙中,我們把頂點都在格點上的三角形稱為格點三角形,如圖,△ABC是一個格點三角形,點A的坐標(biāo)為(﹣1,2).

(1)點B的坐標(biāo)為   ,ABC的面積為   

(2)在所給的方格紙中,請你以原點O為位似中心,將△ABC放大為原來的2倍,放大后點A、B的對應(yīng)點分別為A1、B1,點B1在第一象限;

(3)在(2)中,若P(a,b)為線段AC上的任一點,則放大后點P的對應(yīng)點P1的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,C的半徑為r,P是與圓心C不重合的點,點P關(guān)于C的反稱點的定義如下:若在射線CP上存在一點P′,滿足CP+CP′=2r,則稱P′為點P關(guān)于C的反稱點,如圖為點P及其關(guān)于C的反稱點P′的示意圖.

特別地,當(dāng)點P′與圓心C重合時,規(guī)定CP′=0.

(1)當(dāng)O的半徑為1時.

分別判斷點M(2,1),N(,0),T1, )關(guān)于O的反稱點是否存在?若存在,求其坐標(biāo);

點P在直線y=﹣x+2上,若點P關(guān)于O的反稱點P′存在,且點P′不在x軸上,求點P的橫坐標(biāo)的取值范圍;

2C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點A,B,若線段AB上存在點P,使得點P關(guān)于C的反稱點P′在C的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點A在拋物線yx2bxcb>0)上,且A(1,-1),

(1)若bc=4,b,c的值;

(2)若該拋物線與y軸交于點B,其對稱軸與x軸交于點C,則命題“對于任意的一個k0<k1),都存在b使得OCk·OB.”是否正確?若正確,請證明;若不正確,請舉反例;

(3)將該拋物線平移,平移后的拋物線仍經(jīng)過(1,-1),A的對應(yīng)點A1

(1-m,2b-1).當(dāng)m時,求平移后拋物線的頂點所能達(dá)到的最高點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠按用戶的月需求量()完成一種產(chǎn)品的生產(chǎn),其中.每件的售價為18萬元,每件的成本(萬元)是基礎(chǔ)價與浮動價的和,其中基礎(chǔ)價保持不變,浮動價與月需求量()成反比.經(jīng)市場調(diào)研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關(guān)系式(為常數(shù)),且得到了表中的數(shù)據(jù).

月份()

1

2

成本(萬元/件)

11

12

需求量(件/月)

120

100

(1)滿足的關(guān)系式,請說明一件產(chǎn)品的利潤能否是12萬元;

(2),并推斷是否存在某個月既無盈利也不虧損;

(3)在這一年12個月中,若第個月和第個月的利潤相差最大,求

查看答案和解析>>

同步練習(xí)冊答案