【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.

【答案】
(1)解:由題意 解得 ,

∴拋物線解析式為y= x2﹣x+2


(2)解:∵y= x2﹣x+2= (x﹣1)2+

∴頂點坐標(biāo)(1, ),

∵直線BC為y=﹣x+4,∴對稱軸與BC的交點H(1,3),

∴SBDC=SBDH+SDHC= 3+ 1=3


(3)解:由 消去y得到x2﹣x+4﹣2b=0,

當(dāng)△=0時,直線與拋物線相切,1﹣4(4﹣2b)=0,

∴b=

當(dāng)直線y=﹣ x+b經(jīng)過點C時,b=3,

當(dāng)直線y=﹣ x+b經(jīng)過點B時,b=5,

∵直線y=﹣ x向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,

<b≤3.


【解析】(1)根據(jù)待定系數(shù)法即可解決問題.(2)求出直線BC與對稱軸的交點H,根據(jù)SBDC=SBDH+SDHC即可解決問題.(3)由 ,當(dāng)方程組只有一組解時求出b的值,當(dāng)直線y=﹣ x+b經(jīng)過點C時,求出b的值,當(dāng)直線y=﹣ x+b經(jīng)過點B時,求出b的值,由此即可解決問題.
【考點精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的兩條中線AD、CE交于點G,且AD⊥CE.連接BG并延長與AC交于點F,若AD=9,CE=12,則GF為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=10,AC=2 ,BC邊上的高AD=6,則另一邊BC等于(
A.10
B.8
C.6或10
D.8或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn1 , 使得點A1、A2、A3、…在直線l上,點C1、C2、C3、…在y軸正半軸上,則點Bn的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=900,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.

(1)求證:△ABD≌△ACE;

(2)若AF平分∠DAE交BC于F,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系,并證明;

(3)在(2)的條件下,若BD=6,CF=8,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索題:(x-1)(x+1)=x2-1

(x-1)(x2+x=1)=x3-1

(x-1)(x4+x2+x=1)=x4-1

(x-1)(x5+x4+x2+x=1)=x5-1

根據(jù)前面的規(guī)律,回答下列問題:

(1) …+=_____________.

(2)當(dāng)x=3,…+=__________..

(3)求:…+的值。(請寫出解題過程)

(4)求 …+的值的個位數(shù)字。(只寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.

(1)求證:ABM≌△BCN;

(2)求APN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).

(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且SAOP=4SBOC , 求點P的坐標(biāo);
(3)如圖b,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.

查看答案和解析>>

同步練習(xí)冊答案