【題目】如圖,二次函數(shù)y=ax2+bx(a<0)的圖象過坐標原點O,與x軸的負半軸交于點A,過A點的直線與y軸交于B,與二次函數(shù)的圖象交于另一點C,且C點的橫坐標為﹣1,AC:BC=3:1.
(1)求點A的坐標;
(2)設二次函數(shù)圖象的頂點為F,其對稱軸與直線AB及x軸分別交于點D和點E,若△FCD與△AED相似,求此二次函數(shù)的關(guān)系式.
【答案】
(1)
解:如圖,過點C作CM∥OA交y軸于M.
∵AC:BC=3:1,
∴ = .
∵CM∥OA,
∴△BCM∽△BAO,
∴ = = ,
∴OA=4CM=4,
∴點A的坐標為(﹣4,0);
(2)
解:∵二次函數(shù)y=ax2+bx(a<0)的圖象過A點(﹣4,0),
∴16a﹣4b=0,
∴b=4a,
∴y=ax2+4ax,對稱軸為直線x=﹣2,
∴F點坐標為(﹣2,﹣4a).
設直線AB的解析式為y=kx+n,將A(﹣4,0)代入,
得﹣4k+n=0,
∴n=4k,
∴直線AB的解析式為y=kx+4k,
∴B點坐標為(0,4k),D點坐標為(﹣2,2k),C點坐標為(﹣1,3k).
∵C(﹣1,3k)在拋物線y=ax2+4ax上,
∴3k=a﹣4a,
∴k=﹣a.
∵△AED中,∠AED=90°,
∴若△FCD與△AED相似,則△FCD是直角三角形,
∵∠FDC=∠ADE<90°,∠CFD<90°,
∴∠FCD=90°,
∴△FCD∽△AED.
∵F(﹣2,﹣4a),C(﹣1,3k),D(﹣2,2k),k=﹣a,
∴FC2=(﹣1+2)2+(3k+4a)2=1+a2,CD2=(﹣2+1)2+(2k﹣3k)2=1+a2,
∴FC=CD,
∴△FCD是等腰直角三角形,
∴△AED是等腰直角三角形,
∴∠DAE=45°,
∴∠OBA=45°,
∴OB=OA=4,
∴4k=4,
∴k=1,
∴a=﹣1,
∴此二次函數(shù)的關(guān)系式為y=﹣x2﹣4x.
【解析】(1)過點C作CM∥OA交y軸于M,則△BCM∽△BAO,根據(jù)相似三角形對應邊成比例得出 = ,即OA=4CM=4,由此得出點A的坐標為(﹣4,0);(2)先將A(﹣4,0)代入y=ax2+bx,化簡得出b=4a,即y=ax2+4ax,則頂點F(﹣2,﹣4a),設直線AB的解析式為y=kx+n,將A(﹣4,0)代入,化簡得n=4k,即直線AB的解析式為y=kx+4k,則B點(0,4k),D(﹣2,2k),C(﹣1,3k).由C(﹣1,3k)在拋物線y=ax2+4ax上,得出3k=a﹣4a,化簡得到k=﹣a.再由△FCD與直角△AED相似,則△FCD是直角三角形,又∠FDC=∠ADE<90°,∠CFD<90°,得出∠FCD=90°,△FCD∽△AED.再根據(jù)兩點之間的距離公式得出FC2=CD2=1+a2 , 得出△FCD是等腰直角三角形,則△AED也是等腰直角三角形,所以∠DAE=45°,由三角形內(nèi)角和定理求出∠OBA=45°,那么OB=OA=4,即4k=4,求出k=1,a=﹣1,進而得到此二次函數(shù)的關(guān)系式為y=﹣x2﹣4x.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=x與二次函數(shù)y=x2+bx的圖象相交于O、A兩點,點A(3,3),點M為拋物線的頂點.
(1)求二次函數(shù)的表達式;
(2)長度為2 的線段PQ在線段OA(不包括端點)上滑動,分別過點P、Q作x軸的垂線交拋物線于點P1、Q1 , 求四邊形PQQ1P1面積的最大值;
(3)直線OA上是否存在點E,使得點E關(guān)于直線MA的對稱點F滿足S△AOF=S△AOM?若存在,求出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C、D依次為一直線上4個點,BC=2,△BCE為等邊三角形,⊙O過A、D、E3點,且∠AOD=120°.設AB=x,CD=y,則y與x的函數(shù)關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解2013年八年級學生課外書籍借閱情況,從中隨機抽取了40名學生課外書籍借閱情況,將統(tǒng)計結(jié)果列出如下的表格,并繪制成如圖所示的扇形統(tǒng)計圖,其中科普類冊數(shù)占這40名學生借閱總冊數(shù)的40%.
類別 | 科普類 | 教輔類 | 文藝類 | 其他 |
冊數(shù)(本) | 128 | 80 | m | 48 |
(1)求表格中字母m的值及扇形統(tǒng)計圖中“教輔類”所對應的圓心角α的度數(shù);
(2)該校2013年八年級有500名學生,請你估計該年級學生共借閱教輔類書籍約多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校“振興閱讀工程”的開展情況,教育部門對該校初中生的閱讀情況進行了隨機問卷調(diào)查,繪制了如下圖表: 初中生喜愛的文學作品種類調(diào)查統(tǒng)計表
種類 | 小說 | 散文 | 傳記 | 科普 | 軍事 | 詩歌 | 其他 |
人數(shù) | 72 | 8 | 21 | 19 | 15 | 2 | 13 |
根據(jù)上述圖表提供的信息,解答下列問題:
(1)喜愛小說的人數(shù)占被調(diào)查人數(shù)的百分比是多少?初中生每天閱讀時間的中位數(shù)在哪個時間段內(nèi)?
(2)將寫讀后感、筆記積累、畫圈點讀等三種方式稱為有記憶閱讀.請估計該校現(xiàn)有的2000名初中生中,能進行有記憶閱讀的人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tan∠AOC= ,反比例函數(shù)y= 的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com