【題目】計算題
(1)計算:|﹣3|+( +π)0﹣(﹣ 2﹣2cos60°;
(2)先化簡,在求值:( )+ ,其中a=﹣2+

【答案】
(1)

解:原式=3+1﹣(﹣2)2﹣2× =4﹣4﹣1=﹣1


(2)

解:當a=﹣2+

原式= +

=

=

=7+5


【解析】(1)根據(jù)零指數(shù)冪的意義、特殊角的銳角三角函數(shù)以及負整數(shù)指數(shù)冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.
【考點精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈,銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500.
(1)設(shè)李明每月獲得利潤為w(元),求出w與x的函數(shù)關(guān)系式.
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)當銷售單價定為多少元時,每月可獲得最大利潤?得最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三個小球上分別標有數(shù)字﹣2,﹣1,3,它們除數(shù)字外其余全部相同,現(xiàn)將它們放在一個不透明的袋子里,從袋子中隨機地摸出一球,將球上的數(shù)字記錄,記為m,然后放回;再隨機地摸取一球,將球上的數(shù)字記錄,記為n,這樣確定了點(m,n).
(1)請列表或畫出樹狀圖,并根據(jù)列表或樹狀圖寫出點(m,n)所有可能的結(jié)果;
(2)求點(m,n)在函數(shù)y=﹣ 的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車


根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的市民共有人,其中選擇B類的人數(shù)有人;
(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學數(shù)學興趣小組為了解本校學生對電視節(jié)目的喜愛情況,隨機調(diào)查了部分學生最喜愛哪一類節(jié)目 (被調(diào)查的學生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學生人數(shù);
(2)請將兩個統(tǒng)計圖補充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該中學有2000名學生,請估計該校喜愛電視劇節(jié)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】植樹節(jié)期間,某單位欲購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5顆,需2100元,若購進A種樹苗4顆,B種樹苗10顆,需3800元.
(1)求購進A、B兩種樹苗的單價;
(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,游客在點A處做纜車出發(fā),沿A﹣B﹣D的路線可至山頂D處,假設(shè)AB和BD都是直線段,且AB=BD=600m,α=75°,β=45°,求DE的長. (參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y= x2+bx﹣ 的圖象與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.

(1)請直接寫出點D的坐標:;
(2)當點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(0,1)、點B(0,1+t)、C(0,1﹣t)(t>0),點P在以D(3,3)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則t的最小值是

查看答案和解析>>

同步練習冊答案