【題目】AB,C在數(shù)軸上對應(yīng)的數(shù)分別為13,5,點P在數(shù)軸上對應(yīng)的數(shù)是﹣2.點P關(guān)于點A的對稱點為P1,點P1關(guān)于點B的對稱點為P2,點P2關(guān)于點C的對稱點為P3,點P3關(guān)于點A的對稱點為P4,P1P2018的長為_____

【答案】2

【解析】

由題意分別求出P1、P2、P3P4、P5、P6、P7對應(yīng)的數(shù),從中發(fā)現(xiàn)循環(huán)規(guī)律,進行解答即可.

由題意可知P1點對應(yīng)的數(shù)是4,

P2對應(yīng)的數(shù)是2

P3對應(yīng)的數(shù)是8,

P4對應(yīng)的數(shù)是﹣6,

P5對應(yīng)的數(shù)是12

P6對應(yīng)的數(shù)是﹣2,

P7對應(yīng)的數(shù)是4,

∴從P7開始循環(huán),每6個點依次循環(huán),

2018÷6336…2,

P2018對應(yīng)的數(shù)是2,

P1P2018的長為2,

故答案為2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為校合唱隊購買某種服裝時,商店經(jīng)理給出了如下優(yōu)惠條件:如果一次性購買不超過件,單價為元;如果一次性購買多于件,那么每增加件,購買的所有服裝的單價降低元,但單價不得低于元.按此優(yōu)惠條件,小明一次性購買這種服裝為正整數(shù))件,支付元.

時,小明購買的這種服裝的單價為________元;

寫出關(guān)于的函數(shù)表達式,并給出自變量的取值范圍;

小明一次性購買這種服裝付了元,請問他購買了多少件這種服裝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值

1)(a+2b)(a2b+a+2b2+4ab,其中a=1b=;

2)(a2b+2abb2÷b+a+b)(ab),其中a=,b=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC是⊙O的直徑,過點BBEAD,垂足為點EAB平分∠CAE

1)判斷BE與⊙O的位置關(guān)系,并說明理由;

2)若∠ACB=30°,O的半徑為4,請求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長均為 1.格點三角形 ABC(頂點是網(wǎng)格線交點的三角形)的頂點 A、C 的坐標分別是(﹣2,0),(﹣3,3).

(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系,寫出點 B 的坐標;

(2)把△ABC 繞坐標原點 O 順時針旋轉(zhuǎn) 90°得到△A1B1C1,畫出△A1B1C1,寫出點

B1的坐標;

(3)以坐標原點 O 為位似中心,相似比為 2,把△A1B1C1 放大為原來的 2 倍,得到△A2B2C2 畫出△A2B2C2,使它與△AB1C1 在位似中心的同側(cè);

請在 x 軸上求作一點 P,使△PBB1 的周長最小,并寫出點 P 的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,ACBD相交于0,AEBDE,CFBDF,則圖中的全等三角形共( 。

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,ABAC,∠B36°,D、EBC上兩點,且∠ADE=∠AED2BAD,則圖中等腰三角形共有( 。

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做用頻率估計概率的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實驗最有可能的是(  )

A. 石頭、剪刀、布的游戲中,小明隨機出的是剪刀

B. 擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4

C. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃

D. 拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AEABBC于點E,∠BAC=120°,AE=3cm,則BC的長是_______.

查看答案和解析>>

同步練習冊答案