【題目】閱讀下面的材料并解答問(wèn)題:

例:解方程x4﹣5x2+4=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:

設(shè)x2=y(tǒng),那么x4=y(tǒng)2,于是原方程可變?yōu)?/span>y2﹣5y+4=0,

解得y1=1,y2=4.

當(dāng)y=1時(shí),x2=1,x=±1;

當(dāng)y=4時(shí),x2=4,x=±2;

∴原方程有四個(gè)根:x1=1,x2=﹣1,x3=2,x4=﹣2.

仿照上例解方程:(x2﹣2x)2+(x2﹣2x)﹣6=0

【答案】x1=1+,x2=1﹣

【解析】

根據(jù)題目中的例子和換元法解方程的方法可以解答本題.

設(shè)mx22x,

于是原方程可變形為m2+m60,

則(m2)(m+3)=0,

解得:m2m=﹣3

當(dāng)m2時(shí),x22x2,即x22x20,

解得:x

當(dāng)m=﹣3時(shí),x22x=﹣3,即x22x+30,

因?yàn)?/span>44×1×3=﹣80

所以該方程無(wú)解.

∴原方程有四個(gè)根:x11+,x21

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校每學(xué)期末都要對(duì)優(yōu)秀學(xué)生進(jìn)行表?yè)P(yáng),每班采取民主投票的方式進(jìn)行選舉,然后把名單報(bào)到學(xué)校.若每個(gè)班級(jí)平均分到3位三好生、4位模范生、5位成績(jī)提高獎(jiǎng)的名額,且各項(xiàng)均不能兼得.現(xiàn)在學(xué)校有24個(gè)班級(jí),平均每班50人.

(1)作為一名學(xué)生,你恰好能得到榮譽(yù)的機(jī)會(huì)有多大?

(2)作為一名學(xué)生,你恰好能當(dāng)選三好生或模范生的機(jī)會(huì)有多大?

(3)在全校學(xué)生數(shù)、班級(jí)人數(shù)、三好生數(shù)、模范生數(shù)、成績(jī)提高獎(jiǎng)人數(shù)中,哪些是解決上面兩個(gè)問(wèn)題所需要的?

(4)你可以用什么方法對(duì)(1)(2)問(wèn)的結(jié)果進(jìn)行模擬實(shí)驗(yàn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論: abc<02a+b=0③當(dāng)x=﹣1x=3時(shí),函數(shù)y的值都等于0.4a+2b+c<0,其中正確結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)的頂點(diǎn)出發(fā),沿勻速運(yùn)動(dòng),到點(diǎn)停止運(yùn)動(dòng).點(diǎn)運(yùn)動(dòng)時(shí),線段的長(zhǎng)度與運(yùn)動(dòng)時(shí)間的函數(shù)關(guān)系如圖2所示,其中為曲線部分的最低點(diǎn),則的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里裝有顏色不同的黑、白兩種球共60個(gè),它們除顏色不同外,其余都相同,王穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中攪勻,經(jīng)過(guò)大量重復(fù)上述摸球的過(guò)程,發(fā)現(xiàn)摸到白球的頻率定于0.25.

(1)請(qǐng)估計(jì)摸到白球的概率將會(huì)接近________;

(2)計(jì)算盒子里白、黑兩種顏色的球各有多少個(gè)?

(3)如果要使摸到白球的概率為,需要往盒子里再放入多少個(gè)白球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD和菱形BEFG的邊長(zhǎng)分別是52,∠A60°,連結(jié)DF,則DF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是菱形外一點(diǎn),DEAC,CEBD

1)求證:四邊形DECO是矩形;

2)連接AEBD于點(diǎn)F,當(dāng)∠ADB30°,DE2時(shí),求AF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位運(yùn)動(dòng)員在距籃下4m處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離是2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05m.

(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式.

(2)該運(yùn)動(dòng)員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,

問(wèn):球出手時(shí),他距離地面的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回),其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案