如圖1,AB∥CD,EOF是直線AB、CD間的一條折線.
(1)說明:∠O=∠BEO+∠DFO.
(2)如圖2,如果將折一次改為折二次,如圖2,則∠BEO、∠O、∠P、∠PFC會滿足怎樣的關(guān)系,證明你的結(jié)論.
(3)若將折線繼續(xù)折下去,折三次,折四次折n次,又會得到怎樣的結(jié)論?(不需證明)
(1)通過證明兩直線分別與第三直線平行的性質(zhì)證明三線平行,證出內(nèi)錯角相等。
(2)可證明∠BEO+OPF=∠EOP+∠PFC(3)如果兩平行線間存在一條折線,則所有同向角的和相等。或者:向左凸出的角的和等于向右面凸出的角的和
【解析】
試題分析:(1)證明:過O作OM∥AB,
∵AB∥CD,
∴AB∥OM∥CD,
∴∠BEO=∠MOE,∠DFO=∠MOF,
∴∠BEO+∠DFO=∠EOM+∠FOM,
即∠EOF=∠BEO+∠DFO.
(2)滿足的關(guān)系式是:∠BEO+∠P=∠O+∠PFC,
解:過O作OM∥AB,PN∥AB,
∵AB∥CD,
∴AB∥OM∥PN∥CD,
∴∠BEO=∠EOM,∠PFC=∠NPF,∠MOP=∠NPO,
∴∠EOP﹣∠OPF=(∠EOM+∠MOP)﹣(∠OPN+∠NPF)=∠EOM﹣∠NPF,
∠BEO﹣∠PFC=∠EOM﹣∠NPF,
∴∠BEO﹣∠PFC=∠EOP﹣∠OPF,
∴∠BEO+OPF=∠EOP+∠PFC.
(3)解:如果兩平行線間存在一條折線,則所有同向角的和相等。
或者:向左凸出的角的和等于向右面凸出的角的和
考點:平行線性質(zhì)與判定的運(yùn)用
點評:本題難度較大,主要考查學(xué)生對平行線性質(zhì)與判定的運(yùn)用,為中考幾何問題中常見題型,學(xué)生要牢固掌握。注意培養(yǎng)數(shù)形結(jié)合的思想,并運(yùn)用到實際考試中。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
CD |
A、3個 | B、4個 | C、5個 | D、6個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com