【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為______;
請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
該校共有1200名男生,請(qǐng)估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);
小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為”,請(qǐng)你判斷這種說(shuō)法是否正確,并說(shuō)明理由.
【答案】;補(bǔ)圖見解析;全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù)約為人;這個(gè)說(shuō)法不正確,理由見解析.
【解析】分析:(1)用“經(jīng)常參加”所占的百分比乘以360°計(jì)算即可得解;
(2)先求出“經(jīng)常參加”的人數(shù),然后求出喜歡籃球的人數(shù),再補(bǔ)全統(tǒng)計(jì)圖即可;
(3)用總?cè)藬?shù)乘以喜歡籃球的學(xué)生所占的百分比計(jì)算即可得解;
(4)根據(jù)喜歡乒乓球的27人都是“經(jīng)常參加”的學(xué)生,“偶爾參加”的學(xué)生中也會(huì)有喜歡乒乓球的考慮解答.
詳解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;
故答案為:144°;
(2)“經(jīng)常參加”的人數(shù)為:300×40%=120人,喜歡籃球的學(xué)生人數(shù)為:120﹣27﹣33﹣20=120﹣80=40人;
補(bǔ)全統(tǒng)計(jì)圖如圖所示;
(3)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù)約為:1200×=160人;
(4)這個(gè)說(shuō)法不正確.
理由如下:小明得到的108人是全校經(jīng)常參加課外體育鍛煉的男生中最喜歡的項(xiàng)目是乒乓球的人數(shù),而全校偶爾參加課外體育鍛煉的男生中也會(huì)有最喜歡乒乓球的,因此應(yīng)多于108人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知P(1,2).
(1)在平面直角坐標(biāo)系中描出點(diǎn)P(保留畫圖痕跡);
(2)如果將點(diǎn)P向左平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度得到點(diǎn)P',則點(diǎn)P'的坐標(biāo)為 .
(3)點(diǎn)A在坐標(biāo)軸上,若S△OAP=2,直接寫出滿足條件的點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,是函數(shù)的圖像上一點(diǎn),是y軸上一動(dòng)點(diǎn),四邊形ABPQ是正方形(點(diǎn)A.B.P.Q按順時(shí)針?lè)较蚺帕校?/span>
(1)求a的值;
(2)如圖②,當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P也在函數(shù)的圖像上,求b的值;
(4)設(shè)正方形ABPQ的中心為M,點(diǎn)N是函數(shù)的圖像上一點(diǎn),判斷以點(diǎn)P.Q.M.N為頂點(diǎn)的四邊形能否是正方形,如果能,請(qǐng)直接寫出b的值,如果不能,請(qǐng)說(shuō)明理由。
圖① 圖② 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題情景】利用三角形的面積相等來(lái)求解的方法是一種常見的等積法,此方法是我們解決幾何問(wèn)題的途徑之一.
例如:張老師給小聰提出這樣一個(gè)問(wèn)題:
如圖1,在△ABC中,AB=3,AD=6,問(wèn)△ABC的高AD與CE的比是多少?
小聰?shù)挠?jì)算思路是:
根據(jù)題意得:S△ABC=BCAD=ABCE.
從而得2AD=CE,∴
請(qǐng)運(yùn)用上述材料中所積累的經(jīng)驗(yàn)和方法解決下列問(wèn)題:
(1)【類比探究】
如圖2,在ABCD中,點(diǎn)E、F分別在AD,CD上,且AF=CE,并相交于點(diǎn)O,連接BE、BF,
求證:BO平分角AOC.
(2)【探究延伸】
如圖3,已知直線m∥n,點(diǎn)A、C是直線m上兩點(diǎn),點(diǎn)B、D是直線n上兩點(diǎn),點(diǎn)P是線段CD中點(diǎn),且∠APB=90°,兩平行線m、n間的距離為4.求證:PAPB=2AB.
(3)【遷移應(yīng)用】
如圖4,E為AB邊上一點(diǎn),ED⊥AD,CE⊥CB,垂足分別為D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點(diǎn),連接DM、CN.求△DEM與△CEN的周長(zhǎng)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一個(gè)正方形ABCD,點(diǎn)P是邊BC上一點(diǎn).將繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到(點(diǎn)B,P的對(duì)應(yīng)點(diǎn)分別是)
(1)畫出旋轉(zhuǎn)后所得到的;
(2)聯(lián)結(jié),設(shè),,試用表示的面積;
(3)若的面積為18,的面積為5,試求PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩塊直角三角尺的頂點(diǎn)疊放在一起.
(1)若∠DCE=25°,求∠ACB的度數(shù).
(2)若∠ACB=140°,求∠DCE的度數(shù).
(3)猜想∠ACB與∠DCE的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,直線y=-x+b分別交OA、AB于點(diǎn)C、D,且ΔBOD的面積是4.
(1)求直線AO的解析式;
(2)求直線CD的解析式;
(3)若點(diǎn)M是x軸上的點(diǎn),且使得點(diǎn)M到點(diǎn)A和點(diǎn)C的距離之和最小,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求知中學(xué)有一塊四邊形的空地ABCD,如下圖所示,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,問(wèn)學(xué)校需要投入多少資金買草皮?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說(shuō)法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個(gè)不相等的實(shí)根,則方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;
④若b=2a+c,則方程有兩個(gè)不相等的實(shí)根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com