【題目】已知如圖所示 AD、AE分別是△ABC的中線、高,且AB=5cm,AC=3cm,,△ABD△ACD的周長(zhǎng)之差為_________,△ABD△ACD的面積關(guān)系為_________.

【答案】2cm 相等

【解析】

根據(jù)△ABD與△ACD的周長(zhǎng)的差=AB-AC,三角形的中線把三角形分成面積相等的兩個(gè)三角形,由此即可解答

△ABD的周長(zhǎng)=AB+AD+BD,△ACD的周長(zhǎng)=AC+AD+CD,

∵ADBC的中線,

∴BD=CD,

∵AB=5cm,AC=3cm,

∴△ABD的周長(zhǎng)-△ACD的周長(zhǎng)=AB+AD+BD-AC-AD-CD=AB-AC=2(cm),

∵△ABD與△ACD的底相等,高都是AE,

∴它們的面積相等.

故答案為:2cm;相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代數(shù)學(xué)家們對(duì)于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位,體現(xiàn)了數(shù)學(xué)研究中的繼承和發(fā)展.現(xiàn)用4個(gè)全等的直角三角形拼成如圖所示“弦圖”.RtABC中,∠ACB=90°,若,請(qǐng)你利用這個(gè)圖形解決下列問題:

(1)試說明;

(2)如果大正方形的面積是10,小正方形的面積是2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD⊥BCD,CE⊥ABE,ADCE交于點(diǎn)F,且AD=CD.

(1)求證:△ABD≌△CFD;

(2)已知BC=7,AD=5,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語(yǔ)口語(yǔ)競(jìng)賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績(jī)分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)圖表.

(1)在圖1中,“7分”所在扇形的圓心角等于°.
(2)請(qǐng)你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)經(jīng)計(jì)算,乙校的平均分是8.3分,中位數(shù)是8分,請(qǐng)寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個(gè)學(xué)校成績(jī)較好.
(4)如果該教育局要組織8人的代表隊(duì)參加市級(jí)團(tuán)體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請(qǐng)你分析,應(yīng)選哪所學(xué)校?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程組 的解x為非正數(shù),y為負(fù)數(shù).
(1)求a的取值范圍;
(2)在a的取值范圍中,當(dāng)a為何整數(shù)時(shí),不等式2ax+x>2a+1的解為x<1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件中,不能證明ABC≌△DCB ( 。

A. AB=DC,AC=DB B. AB=DC,ABC=DCB

C. DB=AC,DBC=ACB D. DC=AB,DBC=ACB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B分別在射線Ox,Oy上移動(dòng),BE是∠ABy的角平分線,BE的反向延長(zhǎng)線與∠OAB的平分線相交于點(diǎn)C,試問∠ACB的大小是否為定值?請(qǐng)給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ADC=88°,B=68°,ACD=BCD,AE平分∠BAC,則∠AED的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 并在數(shù)軸上表示解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案