【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F,作CM⊥AD,垂足為M,下列結(jié)論不正確的是( 。
A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM
【答案】D
【解析】
由等邊三角形的性質(zhì)和已知條件證出△AEC≌△BDA,即可得出A正確;
由全等三角形的性質(zhì)得出∠BAD=∠ACE,求出∠CFM=∠AFE=60°,得出∠FCM=30°,即可得出B正確;由等邊三角形的性質(zhì)和三角形的外角性質(zhì)得出C正確;D不正確.
A正確;理由如下:
∵△ABC是等邊三角形,
∴∠BAC=∠B=60°,AB=AC
又∵AE=BD
在△AEC與△BDA中,
,
∴△AEC≌△BDA(SAS),
∴AD=CE;
B正確;理由如下:
∵△AEC≌△BDA,
∴∠BAD=∠ACE,
∴∠AFE=∠ACE+∠CAD=∠BAD+∠CAD=∠BAC=60°,
∴∠CFM=∠AFE=60°,
∵CM⊥AD,
∴在Rt△CFM中,∠FCM=30°,
∴MF=CF;
C正確;理由如下:
∵∠BEC=∠BAD+∠AFE,∠AFE=60°,
∴∠BEC=∠BAD+∠AFE=∠BAD+60°,
∵∠CDA=∠BAD+∠CBA=∠BAD+60°,
∴∠BEC=∠CDA;
D不正確;理由如下:
要使AM=CM,則必須使∠DAC=45°,由已知條件知∠DAC的度數(shù)為大于0°小于60°均可,
∴AM=CM不成立;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮玩撲克牌游戲,小明背對(duì)小亮,讓小亮按下列四個(gè)步驟操作:
第一步:分發(fā)左、中、右三堆牌,每堆牌都為張,且;
第二步:從左邊一堆拿出兩張,放入中間一堆;
第三步:從右邊一堆拿出五張,放入中間一堆
第四步:左邊一堆有幾張牌,就從中間一堆拿幾張牌放入左邊一堆.
(1)填寫下表中的空格:
步驟 | 左邊一堆牌的張數(shù) | 中間一堆牌的張數(shù) | 右邊一堆牌的張數(shù) |
第一步后 | |||
第二步后 | |||
第三步后 | |||
第四步后 |
(2)如若第四步完成后,中間一堆牌的張數(shù)的2倍恰好是右邊一堆牌的張數(shù)的3倍,試求第一步后,每堆牌各有多少張?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下面的證明過程補(bǔ)充完整,括號(hào)內(nèi)寫上相應(yīng)理由或依據(jù):已知,如圖,,,垂足分別為D、F,,請(qǐng)?jiān)囌f明.
證明:∵,(已知)
∴(____________________________)
∴________(____________________________)
∴________(____________________________)
又∵(已知)
∴________(____________________________)
∴________(____________________________)
∴.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.
(1)求證:BN平分∠ABE;
(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線段BC的長;
(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)王師傅某天早上營運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天早上所接六位乘客的行車?yán)锍?/span>()如下:
2,+5,-4,+1,-6,-2
(1)將最后一位乘客送到目的地時(shí),王師傅在早上出發(fā)點(diǎn)的什么位置?
(2)若汽車耗油量為,這天早上王師傅接送乘客,出租車共耗油多少升?
(3)若出租車起步價(jià)為6元,起步里程為 (包括),超過部分(不足按計(jì)算)每千米1.5元,王師傅這天早上共得車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E為CD上一動(dòng)點(diǎn),AE交BD于F,過F作FH⊥AE于H,過H作GH⊥BD于G,下列有四個(gè)結(jié)論:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周長為定值,其中正確的結(jié)論有( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按圖填空,并注明理由.
已知:如圖,∠1=∠2,∠3=∠E.
求證:AD∥BE.
證明:∵∠1=∠2 (已知)
∴_____∥_____
(________)
∴∠E=∠_____
(________)
又∵∠E=∠3 ( 已知 )
∴∠3=∠_____
(________)
∴AD∥BE.
(________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,得到△A′O′B,且反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點(diǎn)C,若SABO=4,tan∠BAO=2,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=5,高AD、BE相交于點(diǎn)O,BD=CD,且AE=BE.
(1)求線段AO的長;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿線段OA以每秒1個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿射線BC以每秒4個(gè)單位長度的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,△POQ的面積為S,請(qǐng)用含t的式子表示S,并直接寫出相應(yīng)的t的取值范圍;
(3)在(2)的條件下,點(diǎn)F是直線AC上的一點(diǎn)且CF=BO.是否存在t值,使以點(diǎn)B、O、P為頂點(diǎn)的三角形與以點(diǎn)F、C、Q為頂點(diǎn)的三角形全等?若存在,請(qǐng)直接寫出符合條件的t值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com