【題目】計算題|1﹣ |﹣ +2cos30°﹣20170;
(1)計算:|1﹣ |﹣ +2cos30°﹣20170;
(2)解不等式組 并求其最小整數解.
【答案】
(1)解:原式= ﹣1﹣2 + ﹣1
=﹣2
(2)解:
解不等式①得x≥﹣1;
解不等式②得x>﹣5;
不等式組的解集為x≥﹣1;
最小整數解為﹣1
【解析】(1)根據絕對值,特殊角的銳角三角函數值,零指數的意義,二次根式的化簡分別進行化簡,再按實數的運算方法進行計算即可;(2)解不等式①得x≥﹣1;解不等式②得x>﹣5;然后根據同大取大得出解集,在解集范圍內得出最小整數解為﹣1。
【考點精析】解答此題的關鍵在于理解二次根式的性質與化簡的相關知識,掌握1、如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然后利用分母有理化進行化簡.2、如果被開方數是整數或整式,先將他們分解因數或因式,然后把能開得盡方的因數或因式開出來,以及對絕對值的理解,了解正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離.
科目:初中數學 來源: 題型:
【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結果保留整數)?
(參考數據:cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳,經過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳,1個小餐廳,可供2280名學生就餐.
(1)求1個大餐廳,1個小餐廳分別可供多少名 就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:若兩個有理數a,b滿足a+b=ab,則稱a,b互為特征數.
(1)3與 互為特征數;
(2)正整數n (n>1)的特征數為 ;(用含n的式子表示)
(3)若m,n互為特征數,且m+mn=-2,n+mn=3,求m+n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從A地到B地的公路需經過C地,圖中AC=6千米,∠CAB=15°,∠CBA=30°.因城市規(guī)劃的需要,將在A,B兩地之間修建一條筆直的公路.
(1)求改直后的公路AB的長;
(2)問公路改直后該段路程比原來縮短了多少千米?(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D是AB上一點,DE⊥AC于點E,F是AD的中點,FG⊥BC于點G,與DE交于點H,若FG=AF,AG平分∠CAB,連接GE,GD.
(1)求證:△ECG≌△GHD;
(2)小亮同學經過探究發(fā)現(xiàn):AD=AC+EC.請你幫助小亮同學證明這一結論;
(3)若∠B=30°,判斷四邊形AEGF是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD,CEFG按如圖放置,點B,C,E在同一條直線上,點P在BC邊上,PA=PF,且∠APF=90°,連接AF交CD于點M,有下列結論:①EC=BP;②AP=AM;③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD+S正方形CEFG=2S△APF.其中正確的是( )
A. ①②③ B. ①③④ C. ①②④⑤ D. ①③④⑤
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com