已知:在矩形AOBC中,OB=4,OA=3,分別以O(shè)B、OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系,F(xiàn)是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),過F點(diǎn)的反比例函數(shù)(k>0)的圖象與AC邊交于點(diǎn)E.
(1)求證:△AOE與△BOF的面積相等.
(2)記S=S△OEF-S△ECF,求當(dāng)k為何值時(shí),S有最大值,最大值為多少?
(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)F,使得將△CEF沿EF對(duì)折后,C點(diǎn)恰好落在OB上?若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由.

(1)證明:設(shè)E(x1,y1),F(x2,y2),△AOE和△FOB的面積分別為S1、S2

由題意得,
, 
∴S1=S2 ,即△AOE和△FOB的面積相等.
(2)由題意知:E、F兩點(diǎn)坐標(biāo)分別為E(,3)、F(4,
S△ECFEC·CF=(4-)(3-
S△EDF=S矩形AOBC-S△AOE-S△ECF=12-k-k-S△ECF
S=S△OEF-S△ECF=12-k-2 S△ECF
=12-k-2×(4-)(3-
S=k2+k,
當(dāng)k=6時(shí),S有最大值3.
(3)存在符合條件的點(diǎn)F,它的坐標(biāo)為(4,

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在矩形AOBC中,OB=4,OA=3.分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B,C重合),過F點(diǎn)的反比例函數(shù)y=
kx
(k>0)的圖象與AC邊交于點(diǎn)E.
(1)求證:△AOE與△BOF的面積相等;
(2)記S=S△OEF-S△ECF,求當(dāng)k為何值時(shí),S有最大值,最大值為多少?
(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)F,使得將△CEF沿EF對(duì)折后,C點(diǎn)恰好落在OB上?若精英家教網(wǎng)存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在矩形AOBC中,OB=3,OA=2.分別以O(shè)B、OA所在直線為x軸和y軸,建立如圖所示的平精英家教網(wǎng)面直角坐標(biāo)系.若點(diǎn)F是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),過F點(diǎn)的反比例函數(shù)y=
kx
(k>0)的圖象與邊交于點(diǎn)E.
(1)直接寫出線段AE、BF的長(zhǎng)(用含k的代數(shù)式表示);
(2)記△OEF的面積為S.
①求出S與k的函數(shù)關(guān)系式并寫出自變量k的取值范圍;
②以O(shè)F為直徑作⊙N,若點(diǎn)E恰好在⊙N上,請(qǐng)求出此時(shí)△OEF的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在矩形AOBC中,OB=4,OA=3.分別以O(shè)B、OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B,C重合),過F點(diǎn)的反比例函數(shù)y=
k
x
的圖象與AC邊交于點(diǎn)E.現(xiàn)進(jìn)行如下操作:將△CEF沿EF對(duì)折后,C點(diǎn)恰好落在OB上的D點(diǎn)處,過點(diǎn)E作EM⊥OB,垂足為M點(diǎn).
(1)用含有k的代數(shù)式表示:E(
 
),F(xiàn)(
 
);
(2)求證:△MDE∽△FBD,并求
ED
DF
的值;
(3)求出F點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年福建省泉州市惠安縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

已知:在矩形AOBC中,OB=3,OA=2.分別以O(shè)B、OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.若點(diǎn)F是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),過F點(diǎn)的反比例函數(shù)y=(k>0)的圖象與邊交于點(diǎn)E.
(1)直接寫出線段AE、BF的長(zhǎng)(用含k的代數(shù)式表示);
(2)記△OEF的面積為S.
①求出S與k的函數(shù)關(guān)系式并寫出自變量k的取值范圍;
②以O(shè)F為直徑作⊙N,若點(diǎn)E恰好在⊙N上,請(qǐng)求出此時(shí)△OEF的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年河南油田中招第二次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:在矩形AOBC中,OB=4,OA=3,分別以O(shè)B、OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系,F(xiàn)是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),過F點(diǎn)的反比例函數(shù)(k>0)的圖象與AC邊交于點(diǎn)E.

(1)求證:△AOE與△BOF的面積相等.

(2)記S=S△OEF-S△ECF,求當(dāng)k為何值時(shí),S有最大值,最大值為多少?

(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)F,使得將△CEF沿EF對(duì)折后,C點(diǎn)恰好落在OB上?若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案