【題目】已知,,點在射線上,

1)如圖 1,若,求的度數(shù);

2)把°”改為,射線 沿射線 平移,得到,其它條件不變(如 2 所示),探究 的數(shù)量關(guān)系;

3)在(2)的條件下,作,垂足為 ,與 的角平分線 交于點,若 , 用含 α 的式子表示(直接寫出答案).

【答案】(1) 150°;(2) OCD+BO'E=240°;(3) 30°+

【解析】

1)先求出到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求解;

2)過O點作OF//CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO'E的數(shù)量關(guān)系;

3)根據(jù)四邊形內(nèi)角和為360°,再結(jié)合(2)的結(jié)論以及角平分線的定義即可解答.

解:(1)∵CD//OE,

∴∠AOE=OCD=120°,

∴∠BOE=360°-90°-120°=150°;

2)如圖2,過O點作OF//CD,

CD//OE,

OFOE,

∴∠AOF=180°-OCD,∠BOF=EO'O=180°-BO'E,

∴∠AOB=AOF+BOF=180°-OCD+180°-BO'E=360°-(∠OCD+BO'E=120°,

∴∠OCD+BO'E=240°;

3)∵CP是∠OCD的平分線,

∴∠OCP=OCD,

∴∠CPO'=360°-90°-120°-OCP

=150°-OCD

=150°-240°-BO'E

=30°+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,E、F分別在直線ABCD,EPF=90°,∠BEP=GEP,則∠1與∠2的數(shù)量關(guān)系為( )

A. 1=2B. 1=22C. 1=32D. 1=42

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=mx2﹣2mx+m﹣3(m>0)在﹣1<x<0位于x軸下方,在3<x<4位于x軸上方,則m的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,將兩個邊長為1的小正方形分別沿對角線剪開,拼成正方形ABCD

1)正方形ABCD的面積為    ,邊長為    ,對角線BD=    ;

2)求證:

3)如圖②,將正方形ABCD放在數(shù)軸上,使點B與原點O重合,邊AB落在x軸的負(fù)半軸上,則點A所表示的數(shù)為    ,若點E所表示的數(shù)為整數(shù),則點E所表示的數(shù)為   。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分8分)某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.

1)該商家購進(jìn)的第一批襯衫是多少件?

2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】抗震救災(zāi)中,某縣糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到具有較強抗震功能的AB兩倉庫.已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為70噸,B庫的容量為110噸.從甲、乙兩庫到A、B兩庫的路程和運費如下表:(表中“元/噸千米”表示每噸糧食運送1千米所需人民幣)

路程(千米)

運費(元/噸千米)

甲庫

乙?guī)?/span>

甲庫

乙?guī)?/span>

A

20

15

12

12

B

25

20

10

8

1)若甲庫運往A庫糧食x噸,請寫出將糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關(guān)系式;

2)當(dāng)甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西安市2016年中考,綜合素質(zhì)測試滿分為100分.某校為了調(diào)查學(xué)生對于綜合素質(zhì)的掌握程度,在九年級學(xué)生中隨機抽取了部分學(xué)生進(jìn)行模擬測試,并將測試成績繪制成下面兩幅統(tǒng)計圖.

試根據(jù)統(tǒng)計圖中提供的數(shù)據(jù),回答下面問題:
(1)計算樣本中,成績?yōu)?8分的學(xué)生有分,并補全條形統(tǒng)計圖.
(2)樣本中,測試成績的中位數(shù)是分,眾數(shù)是分.
(3)若該校九年級共有2000名學(xué)生,根據(jù)此次模擬成績估計該校九年級中考綜合速度測試將有多少名學(xué)生可以獲得滿分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形ABCD中,AB4cm,BC8cm,AC的垂直平分線EF分別交AD、BC于點EF,垂足為O

1)如圖(1),連接AF、CE

①四邊形AFCE是什么特殊四邊形?說明理由;

②求AF的長;

2)如圖(2),動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點PAFBA停止,點QCDEC停止.在運動過程中,已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副三角板的三個內(nèi)角分別是90,45,4590,60,30,按如圖所示疊放在一起,若固定三角形AOB,改變?nèi)切?/span>ACD的位置(其中點A位置始終不變),可以擺成不同的位置,使兩塊三角板至少有一組邊平行。設(shè)∠BAD=α(0<α<180)

(1)如圖1,請你探索當(dāng)α為多少時,CDOB,并說明理由;

(2)如圖2,當(dāng)α=___,ADOB;

(3)在點A位置始終不變的情況下,你還能擺成幾種不同的位置,使兩塊三角板中至少有一組邊平行,請直接寫出符合要求的α的度數(shù)。(寫出三個即可)

查看答案和解析>>

同步練習(xí)冊答案