【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足=,連接AF并延長交⊙O于點(diǎn)E。 連接AD、DE,若CF=2,AF=3。給出下列結(jié)論:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4 其中正確的是( )
A.①②④B.①②③C.②③④D.①③④
【答案】A
【解析】
①利用垂徑定理可知,然后得到∠ADF=∠AED,結(jié)合公共角可證明△ADF∽△AED;②結(jié)合CF=2,且,可求得DF=6,且CG=DG,可求得FG=2;③在Rt△AGF中可求得AG,在Rt△AGD中可求得tan∠ADG=,由∠E=∠ADG,可得tan∠E;④可先求得△ADF與△AED的相似比,再求S△ADF,進(jìn)而求出S△ADE,然后由S△DEF=S△AED-S△ADF得出結(jié)果.
解:①∵AB為直徑,AB⊥CD,
∴,
∴∠ADF=∠AED,且∠FAD=∠DAE,
∴△ADF∽△AED,故①正確;
②∵AB為直徑,AB⊥CD,
∴CG=DG,
∵,且CF=2,
∴FD=6,
∴CD=8,
∴CG=4,
∴FG=CGCF=42=2,故②正確;
③在Rt△AGF中,AF=3,FG=2,
∴AG=,
∴tan∠ADG=,
∵∠E=∠ADG,
∴tan∠E=,故③錯(cuò)誤;
④在Rt△ADG中,AG=,DG=4,
∴AD=,
∴,
∴,
∵,
∴S△AED=,
∴S△DEF=S△AED-S△ADF=-=,故④錯(cuò)誤;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過、作x軸的垂線,分別交直線于C、D兩點(diǎn)拋物線經(jīng)過O、C、D三點(diǎn).
求拋物線的表達(dá)式;
點(diǎn)M為直線OD上的一個(gè)動(dòng)點(diǎn),過M作x軸的垂線交拋物線于點(diǎn)N,問是否存在這樣的點(diǎn)M,使得以A、C、M、N為頂點(diǎn)的四邊形為平行四邊形?若存在,求此時(shí)點(diǎn)M的橫坐標(biāo);若不存在,請(qǐng)說明理由;
若沿CD方向平移點(diǎn)C在線段CD上,且不與點(diǎn)D重合,在平移的過程中與重疊部分的面積記為S,試求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,已知∠C=90°,∠B=55°,點(diǎn)D在邊BC上,BD=2CD.把線段BD 繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)α(0<α<180)度后,如果點(diǎn)B恰好落在Rt△ABC的邊上,那么α=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小英同時(shí)擲甲、乙兩個(gè)質(zhì)地均勻的骰子(6個(gè)面上分別標(biāo)有1,2,3,4,5,6這6個(gè)數(shù)字).記甲朝上的一面數(shù)字為x,乙朝上的一面數(shù)字為y,這樣確定點(diǎn)P的一個(gè)坐標(biāo)(x,y),那么點(diǎn)P落在y=上的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),平行于x軸的直線與拋物線L:y=ax2相交于A,B兩點(diǎn)(點(diǎn)B在第一象限),點(diǎn)D在AB的延長線上.
(1)已知a=1,點(diǎn)B的縱坐標(biāo)為2.
①如圖1,向右平移拋物線L使該拋物線過點(diǎn)B,與AB的延長線交于點(diǎn)C,求AC的長.
②如圖2,若BD=AB,過點(diǎn)B,D的拋物線L2,其頂點(diǎn)M在x軸上,求該拋物線的函數(shù)表達(dá)式.
(2)如圖3,若BD=AB,過O,B,D三點(diǎn)的拋物線L3,頂點(diǎn)為P,對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a3,過點(diǎn)P作PE∥x軸,交拋物線L于E,F兩點(diǎn),求的值,并直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中①;②;③;④,是一元二次方程的有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD 中,AB=4,AD=a,點(diǎn)P在AD上,且AP=2,點(diǎn)E是邊AB上的動(dòng)點(diǎn),以PE為邊作直角∠EPF,射線PF交BC于點(diǎn)F,連接EF,給出下列結(jié)論:①tan∠PFE=;②a的最小值為10.則下列說法正確的是( )
A.①②都對(duì)B.①②都錯(cuò)C.①對(duì)②錯(cuò)D.①錯(cuò)②對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面內(nèi)有一等腰Rt△ABC,∠ACB=90°,點(diǎn)A在直線l上.過點(diǎn)C作CE⊥1于點(diǎn)E,過點(diǎn)B作BF⊥l于點(diǎn)F,測量得CE=3,BF=2,則AF的長為( 。
A. 5 B. 4 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提升學(xué)生的藝術(shù)素養(yǎng),某校計(jì)劃開設(shè)四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學(xué)生必須選修且只能選修一門課程,為保證計(jì)劃的有效實(shí)施,學(xué)校隨機(jī)對(duì)部分學(xué)生進(jìn)行了一次調(diào)查,并將調(diào)査結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
學(xué)生選修課程統(tǒng)計(jì)表
課程 | 人數(shù) | 所占百分比 |
聲樂 | 14 | |
舞蹈 | 8 | |
書法 | 16 | |
攝影 | ||
合計(jì) |
根據(jù)以上信息,解答下列問題:
(1) , .
(2)求出的值并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該校有1500名學(xué)生,請(qǐng)你估計(jì)選修“聲樂”課程的學(xué)生有多少名.
(4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎(chǔ),學(xué)校準(zhǔn)備從這4人中隨機(jī)抽取2人編排“舞蹈”在開班儀式上表演,請(qǐng)用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個(gè)班級(jí)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com