【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( )
A.2個 B.3個 C.4個 D.5個
【答案】B.
【解析】
試題分析:由﹣ =2,可得4a+b=0.故(1)正確;當(dāng)x=﹣3時,y<0,所以9a﹣3b+c<0,即9a+c<3b,故(2)錯誤;由圖象可知拋物線經(jīng)過(﹣1,0)和(5,0),可得,解得,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,又因a<0,所以8a+7b=2c>0,故(3)正確.已知點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3),計(jì)算﹣2=,2﹣(﹣)=,因<可得點(diǎn)C離對稱軸的距離近,所以y3>y2,再由a<0,﹣3<﹣<2,可得y1<y2,即可得y1<y2<y3,故(4)錯誤.∵a<0,(x+1)(x﹣5)=﹣>0,即(x+1)(x﹣5)>0,所以x<﹣1或x>5,故(5)正確.故答案選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面不是同類項(xiàng)得是( )
A. -2與12 B. ﹣2a2b與a2b C. 2m與2n D. -x2y2與12x2y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在多邊形內(nèi)角和公式的探究過程中,主要運(yùn)用的數(shù)學(xué)思想是( )
A.化歸思想B.分類討論C.方程思想D.數(shù)形結(jié)合思想
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在函數(shù)y=4-3x中,y隨x的增大而__________,此函數(shù)圖象經(jīng)過________象限.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).
(1)求拋物線的解析式;
(2)H是C關(guān)于x軸的對稱點(diǎn),P是拋物線上的一點(diǎn),當(dāng)△PBH與△AOC相似時,求符合條件的P點(diǎn)的坐標(biāo)(求出兩點(diǎn)即可);
(3)過點(diǎn)C作CD∥AB,CD交拋物線于點(diǎn)D,點(diǎn)M是線段CD上的一動點(diǎn),作直線MN與線段AC交于點(diǎn)N,與x軸交于點(diǎn)E,且∠BME=∠BDC,當(dāng)CN的值最大時,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com