如圖,平面直角坐標(biāo)系中點(diǎn)A坐標(biāo)為(2,-4),以A為頂點(diǎn)的拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)交x軸于點(diǎn)B.
(1)求拋物線的解析式;
(2)取線段AB上一點(diǎn)D,以BD為直徑作⊙C交x軸于點(diǎn) E,作EF⊥AO于點(diǎn)F,求證:EF是⊙C的切線;
(3)設(shè)⊙C的半徑為r,EF=m,求m與r的函數(shù)關(guān)系式及自變量r的取值范圍.

【答案】分析:(1)結(jié)合已知條件可以知道拋物線經(jīng)過(guò)A(2,-4),O(0,0),代入解析式,即可求出拋物線的解析式;
(2)連接CE,只要求證CE∥AO,結(jié)合已知推出EF⊥CE,即可求證出結(jié)論;
(3)作AH⊥OB于H點(diǎn),結(jié)合勾股定理和拋物線的性質(zhì)求出個(gè)線段的長(zhǎng)度,根據(jù)平行線的性質(zhì),寫出比例式,求出半徑CB的長(zhǎng)度
解答:(1)解:設(shè)y=a(x-2)2-4,把O(0,0)代入,得4a-4=0,
∴a=1,
∴y=(x-2)2-4=y=x2-4x;

(2)證明:連接CE,
∴CE=CB
∴∠CEB=∠CBE
∵拋物線有對(duì)稱性
∴AO=AB
∴∠AOB=∠OBA
∴∠AOB=∠CEB
∴CE∥AO
∵EF⊥AO
∴EF⊥CE
∴EF是⊙C的切線(5分)

(3)解:,∴,

由題意可知:OH=2,AH=4,根據(jù)勾股定理得:OA=2,
∴sin∠AOH=
∵OB=4,BE=r,
∴OE=4-r,
∴sin∠AOH=,即m=EF=OE•sin∠AOH=-r.
∴EF=-r(10分).
∵點(diǎn)D在線段AB上,A(2,-4),B(4,0),
∴AB==3,
∴0<r<
點(diǎn)評(píng):本題主要考查拋物線的確定、拋物線的性質(zhì)、勾股定理、平行線的性質(zhì)、等腰三角形的性質(zhì)、切線定理性質(zhì),本題關(guān)鍵在于確定好輔助線,綜合運(yùn)用有關(guān)性質(zhì)定理解決實(shí)際問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,O為直角三角形ABC的直角頂點(diǎn),∠B=30°,銳角頂點(diǎn)A在雙曲線y=
1x
上運(yùn)動(dòng),則B點(diǎn)在函數(shù)解析式
 
上運(yùn)動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時(shí)平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(1,2).將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)O的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點(diǎn)D為線段OA上一動(dòng)點(diǎn),連接CD.
(1)判斷△ABC的形狀并說(shuō)明理由;
(2)如圖,過(guò)點(diǎn)D作CD的垂線,過(guò)點(diǎn)B作BC的垂線,兩垂線交于點(diǎn)G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點(diǎn)D到CA、CO的距離相等,E為AO的中點(diǎn),且EF∥CD交y軸于點(diǎn)F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請(qǐng)問(wèn)在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案