【題目】某商場(chǎng)用2500元購(gòu)進(jìn)A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià)、標(biāo)價(jià)如下表所示.
類型 | A型 | B型 |
進(jìn)價(jià)(元/盞) | 40 | 65 |
標(biāo)價(jià)(元/盞) | 60 | 100 |
(1)這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?
(2)若A型臺(tái)燈按標(biāo)價(jià)的9折出售,B型臺(tái)燈按標(biāo)價(jià)的8折出售,那么這批臺(tái)燈全部售出后,商場(chǎng)共獲利多少元?
【答案】
(1)解:設(shè)A型臺(tái)燈購(gòu)進(jìn)x盞,B型臺(tái)燈購(gòu)進(jìn)y盞.
根據(jù)題意得: ,解得:
(2)解:30×(60×90%﹣40)+20×(100×80%﹣65)
=30×14+20×15
=720(元).
答:A型臺(tái)燈購(gòu)進(jìn)30盞,B型臺(tái)燈購(gòu)進(jìn)20盞;這批臺(tái)燈全部售完后,商場(chǎng)共獲利720元.
【解析】(1)有兩個(gè)等量關(guān)系:A型燈盞數(shù)+B型燈盞數(shù)=50,購(gòu)買A型燈錢數(shù)+購(gòu)買B型燈錢數(shù)=2500.(2)根據(jù)利潤(rùn)=售價(jià)﹣進(jìn)價(jià),知商場(chǎng)共獲利=A型燈利潤(rùn)+B型燈利潤(rùn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為6的正方形紙片ABCD對(duì)折,使AB與DC重合,折痕為EF,展平后,再將點(diǎn)B折到邊CD上,使邊AB經(jīng)過(guò)點(diǎn)E,折痕為GH,點(diǎn)B的對(duì)應(yīng)點(diǎn)為M,點(diǎn)A的對(duì)應(yīng)點(diǎn)為N.
(1)若CM=x,則CH= (用含x的代數(shù)式表示);
(2)求折痕GH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與x軸、y軸相交于B、C兩點(diǎn),動(dòng)點(diǎn)D在線段OB上,將線段DC繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到DE,過(guò)點(diǎn)E作直線l⊥x軸于H,過(guò)點(diǎn)C作CF⊥y軸,交直線l于F,設(shè)點(diǎn)D的橫坐標(biāo)為m.
(1)請(qǐng)直接寫出點(diǎn)B、C的坐標(biāo);
(2)當(dāng)點(diǎn)E落在直線BC上時(shí),求tan∠FDE的值;
(3)對(duì)于常數(shù)m,探究:在直線l上是否存在點(diǎn)G,使得∠CDO=∠DFE+∠DGH?若存在,請(qǐng)求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b,當(dāng)x=2時(shí)y的值是﹣1,當(dāng)x=﹣1時(shí)y的值是5.
(1)求此一次函數(shù)的解析式;
(2)若點(diǎn)P(m,n)是此函數(shù)圖象上的一點(diǎn),﹣3≤m≤2,求n的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊形狀為四邊形的鋼板,量得它的各邊長(zhǎng)度為AB=9cm,BC=12cm,CD=17cm,DA=8cm,∠B=90°.求這塊鋼板的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張明隨機(jī)抽查了學(xué)校七年級(jí)63名學(xué)生的身高(單位:cm),他準(zhǔn)備繪制頻數(shù)分布直方圖,這些數(shù)據(jù)中最大值是185,最小值是147,若以4為組距(每組兩個(gè)端點(diǎn)之間的距離叫做組距),則這些數(shù)據(jù)可分成____組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中:
①﹣a一定是負(fù)數(shù);
②倒數(shù)等于它本身的數(shù)是±1;
③幾個(gè)有理數(shù)相乘,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);
④幾個(gè)有理數(shù)相乘,當(dāng)積為負(fù)時(shí),負(fù)因數(shù)有奇數(shù)個(gè).
其中正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)A(3,3 )是正比例函數(shù)y=x上一點(diǎn),點(diǎn)M(m,0)與點(diǎn)N(0,n)分別在x軸與y軸上,且∠MAN=90°.
(1)如圖1,當(dāng)N點(diǎn)與原點(diǎn)O重合,求M點(diǎn)的坐標(biāo);
(2)如圖2,已知m,n都為正數(shù),連接MN,若MN=,求△MON的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(,)和直線y=kx+b,則點(diǎn)P到直線y=kx+b的距離證明可用公式d=計(jì)算.
例如:求點(diǎn)P(﹣1,2)到直線y=3x+7的距離.
解:因?yàn)橹本y=3x+7,其中k=3,b=7.
所以點(diǎn)P(﹣1,2)到直線y=3x+7的距離為:d====.
根據(jù)以上材料,解答下列問(wèn)題:
(1)求點(diǎn)P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標(biāo)為(0,5),半徑r為2,判斷⊙Q與直線的位置關(guān)系并說(shuō)明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com