(1998•麗水)如圖,⊙O1與⊙O2外切于點(diǎn)C,一條外公切線切兩圓于點(diǎn)A,B,已知⊙O1的半徑是9,⊙O2的半徑是3,求∠BAC的度數(shù).

【答案】分析:作直角梯形的另一高.根據(jù)銳角三角函數(shù)求得∠O1的度數(shù),再根據(jù)弦切角定理求解.
解答:解:作O2D⊥O1A,
在直角三角形O2O1D中,O2O1=9+3=12,O1D=9-3=6,
則∠O1=60°,
根據(jù)弦切角定理,得到∠BAC=30°.
點(diǎn)評(píng):此題要構(gòu)造直角三角形,根據(jù)銳角三角函數(shù)的知識(shí)和弦切角定理進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(1998•麗水)如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn)CD⊥AB,垂足是D.若∠CAB=α,則=( )

A.cos2α
B.cosα
C.sin2α
D.sinα

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(1998•麗水)如圖,在△ABC中,AB=AC=13,BC=10,AH⊥BC,H是垂足,D是BC上的點(diǎn),DE⊥AB,E是垂足,DF∥AB,交AC于點(diǎn)F.
(1)求證:△DBE∽△ABH;
(2)設(shè)BD=x,△DEF的面積為y,寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)△DEF的面積y為最大時(shí),求tan∠EFD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(1998•麗水)如圖,已知△ADE∽△ABC,相似比為2:3,則=( )

A.3:2
B.2:3
C.2:1
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年浙江省麗水市中考數(shù)學(xué)試卷 題型:填空題

(1998•麗水)如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年浙江省麗水市中考數(shù)學(xué)試卷 題型:填空題

(1998•麗水)如圖,直線AB與CD相交于點(diǎn)O,已知∠AOD=120°,則∠COB的補(bǔ)角是    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案