【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,tanA=4/3,點(diǎn)D是斜邊AB上的動(dòng)點(diǎn),連接CD,作DE⊥CD,交射線CB于點(diǎn)E,設(shè)AD=x。(1)當(dāng)點(diǎn)D是邊AB的中點(diǎn)時(shí),求線段DE的長;(2)當(dāng)△BED是等腰三角形時(shí),求x的值;(3)如果y=DE/DB。求y關(guān)于x的函數(shù)解析式,并寫出它的定義域。
【答案】(1)DE=;(2)(i)x=;(ii)AD=2;(3)y=(0<x<10).
【解析】
試題(1)在直角三角形ABC中,由AB與tanA的值,利用銳角三角函數(shù)定義及勾股定理求出BC與AC的長,由D為斜邊上的中點(diǎn),利用直角三角形斜邊上的中線等于斜邊的一半得到CD=AD=BD=5,可得出∠DCB=∠DBC,再由一對(duì)直角相等,利用兩對(duì)對(duì)應(yīng)角相等的三角形相似得到△EDC與△ACB相似,由相似得比例,即可求出DE的長;
(2)分兩種情況考慮:
(i)當(dāng)E在BC邊上時(shí),由△BDE為等腰三角形且∠BED為鈍角,得到DE=BE,利用等邊對(duì)等角得到∠EBD=∠EDB,利用等角的余角相等得到∠CDA=∠A,利用等角對(duì)等邊得到CD=AC,作CH垂直于AB,利用三線合一得到AD=2AH,由cosA的值求出AH的長,進(jìn)而求出AD的長,即為x的值;
(ii)當(dāng)E為BC延長線上時(shí),與∠DBE為鈍角得到DB=BE,同理求出x的值;
(3)作DM垂直于BC,得到DM與AC平行,由平行得比例,表示出DM與BM,進(jìn)而表示出CD與CM,由三角形DEM與三角形CDM相似得比例,表示出DE,由BD=AB-AD=10-x,將DE與DB代入表示出y,化簡得到結(jié)果,并求出x的范圍即可.
試題解析:
(1)在△ABC中,∵∠ACB=90°,AB=10,tanA="4" 3 ,
∴BC=8,AC=6,
∵點(diǎn)D為斜邊AB的中點(diǎn),∴CD=AD=BD=5,
∴∠DCB=∠DBC,
∵∠EDC=∠ACB=90°,
∴△EDC∽△ACB,
∴DE:CD="AC:BC" ,即DE:5="6:8" ,
則DE=;
(2)分兩種情況情況:
(i)當(dāng)E在BC邊長時(shí),
∵△BED為等腰三角形,∠BED為鈍角,
∴EB=ED,
∴∠EBD=∠EDB,
∵∠EDC=∠ACB=90°,
∴∠CDA=∠A,
∴CD=AC,
作CH⊥AB,垂足為H,那么AD=2AH,
∴AH:AC="3:5" ,即AH=,
∴AD=,即x=;
(ii)當(dāng)E在CB延長線上時(shí),
∵△BED為等腰三角形,∠DBE為鈍角,
∴BD=DE,
∴∠BED=∠BDE,
∵∠EDC=90°,
∴∠BED+∠BCD=∠BDE+∠BDC=90°,
∴∠BCD=∠BDC,
∴BD=BC=8,
∴AD=x=AB-BD=10-8=2;
(3)作DM⊥BC,垂足為M,
∵DM∥AC,
∴DM:AC="BM:BC=BD:BA" ,
∴DM=(10-x),BM=(10-x),
∴CM=8-(10-x)=x,CD= x2x+36 ,
∵△DEM∽△CDM,/span>
∴DE:DM="CD:CM" ,即DE=,
∴y=,
整理得:y=(0<x<10).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點(diǎn)B作⊙O的切線BM,弦CD//BM,交AB于點(diǎn)F,且,連接AC,AD,延長AD交BM于點(diǎn)E.
(l)求證:△ACD是等邊三角形;
(2)連接OE,若DE=2,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場平時(shí)都以同樣價(jià)格出售相同的商品,“五一”期間兩家商場都讓利酬賓.其中甲商場所有商品直接打折銷售,乙商場在購買一定數(shù)額商品后,超過部分打折售.設(shè)商品的原價(jià)為元,購買商品后實(shí)付金額為元,與之間的函數(shù)關(guān)系如圖所示:
(1)求的值;
(2)說出甲乙兩家商場的具體銷售方式;
(3)“五一”期間,選擇哪家商場去購物更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4m時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2m,當(dāng)水面下降1m時(shí),水面的寬度為( )
A.3 B.2 C.3 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC 中, ,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△繞點(diǎn)順時(shí)針旋轉(zhuǎn)90后,得到△,連接.列結(jié)論:
①△ADC≌△AFB;②△ ≌△;③△≌△;④
其中正確的是( )
A. ②④ B. ①④ C. ②③ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春秋旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):
某單位組織員工去天水灣風(fēng)景區(qū)旅游,共支付給春秋旅行社旅游費(fèi)用27000元,請(qǐng)問該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年全球葵花籽產(chǎn)量約為4200萬噸,比2014年上漲2.1%,某企業(yè)加工并銷售葵花籽,假設(shè)銷售量與加工量相等,在圖中,線段AB、折線CDB分別表示葵花籽每千克的加工成本y1(元)、銷售價(jià)y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系;
(1)請(qǐng)你解釋圖中點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;
(2)求線段AB所表示的y1與x之間的函數(shù)解析式;
(3)當(dāng)0<x≤90時(shí),求該葵花籽的產(chǎn)量為多少時(shí),該企業(yè)獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了深化改革,某校積極開展校本課程建設(shè),計(jì)劃成立“文學(xué)鑒賞”、“科學(xué)實(shí)驗(yàn)”、“音樂舞蹈”和“手工編織”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán).為此,隨機(jī)調(diào)查了本校各年級(jí)部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):
某校被調(diào)查學(xué)生選擇社團(tuán)意向統(tǒng)計(jì)表
選擇意向 | 所占百分比 |
文學(xué)鑒賞 | a |
科學(xué)實(shí)驗(yàn) | 35% |
音樂舞蹈 | b |
手工編織 | 10% |
其他 | c |
根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù)及a,b,c的值;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1200名學(xué)生,試估計(jì)全校選擇“科學(xué)實(shí)驗(yàn)”社團(tuán)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖,△ABC中,∠ACB=90°,D.E分別是BC、BA的中點(diǎn),聯(lián)結(jié)DE,F(xiàn)在DE延長線上,且AF=AE.
(1)求證:四邊形ACEF是平行四邊形;
(2)若四邊形ACEF是菱形,求∠B的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com