【題目】如圖,粗線和細線是公交車從少年宮到體育館的兩條行駛路線.

1)判斷兩條線的長短;

2)小麗坐出租車由體育館到少年宮,假設出租車的收費標準為:起步價為7元,3千米以后每千米1.8元,用代數(shù)式表示出租車的收費元與行駛路程)千米之間的關(guān)系;

3)如果(2)中的這段路程長5千米,小麗身上有10元錢,夠不夠小麗坐出租車由體育館到少年宮呢?說明理由.

【答案】1)相等;(2m=1.8s+1.6;(3)不夠,理由見解析.

【解析】

1)根據(jù)平移的性質(zhì)解答即可;

2)根據(jù)收費=起步價7+1.8×(行駛路程-3)列式整理即可;

3)把s=5代入(2)題的關(guān)系式計算,再用計算結(jié)果與10作比較即可.

解:(1)如圖所示:

BH+GF+DE=AC,HG+FE+DA=BC

∴粗線ACB和細線ADEFGHB的長相等;

2)根據(jù)題意得:m=7+1.8(s3)=1.8s+1.6();

3)當s=5時,m=1.8×5+1.6=10.610,∴小麗身上的錢不夠坐出租車由體育館到少年宮.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】2019年春季環(huán)境整治活動中,某社區(qū)計劃對面積為的區(qū)域進行綠化.經(jīng)投標,由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為區(qū)域的綠化時,甲隊比乙隊少用5.

1)求甲、乙兩工程隊每天能完成綠化的面積;

2)設甲工程隊施工天,乙工程隊施工天,剛好完成綠化任務,求關(guān)于的函數(shù)關(guān)系式;

3)在(2)的條件下,若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過25天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是直線AB上一點,OC為任一條射線,OD平分∠AOC,OE平分∠BOC

1)分別寫出圖中∠AOD和∠AOC的補角

2)求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在甲村至乙村間有一條公路,在C處需要爆破,已知點C與公路上的?空A的距離為300米,與公路上的另一?空B的距離為400米,且CACB,如圖所示,為了安全起見,爆破點C周圍半徑250米范圍內(nèi)不得進入,問:在進行爆破時,公路AB段是否有危險?是否需要暫時封鎖?請用你學過的知識加以解答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B90°AC12,∠A60°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向A點勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點DE運動的時間是t秒(t0).過點DDFBC于點F,連接DE、EF

1AB的長是   

2)在D、E的運動過程中,線段EFAD的關(guān)系是否發(fā)生變化?若不變化,那么線段EFAD是何關(guān)系,并給予證明;若變化,請說明理由.

3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019101日,中華人民共和國成立70周年,成都市民通過各種方式觀看了國慶閱兵直播.武侯區(qū)某街道辦為了解居民的“觀看方式”和 “最喜歡的分列式方隊”的情況,隨機調(diào)查了本街道部分居民(每位被調(diào)查者需完成以上兩個方面的問題),并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,其中通過“電視端“方式觀看的居民有320人.

請根據(jù)以上信息,解答下列問題:

1)求本次隨機調(diào)查的總?cè)藬?shù);

2)請補全條形統(tǒng)計圖;

3)若武侯區(qū)該街道居民約有60000人,試估計其中最喜歡護旗方隊的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由邊長為1 的正方體搭成的立體圖形,第(1)個圖形由1個正方體搭成,第(2)個圖形由4個正方體搭成,第(3)個圖形由10個正方體搭成,以此類推,搭成第(6)個圖形所需要的正方體個數(shù)是(

A.84B.56C.37D.36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是某中學足球冠軍杯第一階段組賽不完整的積分表.組共個隊,每個隊分別與其它個隊進行主客場比賽各一場,即每個隊都要進行場比賽.每隊每場比賽積分都是自然數(shù).(總積分勝場積分平場積分負場積分)

球隊

比賽場次

勝場次數(shù)

平場次數(shù)

負場次數(shù)

總積分

戰(zhàn)神隊

旋風隊

龍虎隊

夢之隊

本次足球小組賽中,平一場積___________分,夢之隊總積分是___________分.

查看答案和解析>>

同步練習冊答案