【題目】如圖,在等腰直角三角形中,,一個三角尺的直角頂點與邊的中點重合,且兩條直角邊分別經(jīng)過點和點,將三角尺繞點按順時針方向旋轉(zhuǎn)任意一個銳角,當三角尺的兩直角邊與,分別交于點,時,下列結(jié)論中錯誤的是( )
A.B.
C.D.
【答案】C
【解析】
連接AO,易證△EOA≌△FOC(ASA),利用全等三角形的性質(zhì)可得出EA=FC,進而可得出AE+AF=AC,選項A正確;由三角形內(nèi)角和定理結(jié)合∠B+∠C=90°,∠EOB+∠FOC=90°可得出∠BEO+∠OFC=180°,選項B正確;由△EOA≌△FOC可得出S△EOA=S△FOC,結(jié)合圖形可得出S四邊形AEOF=S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=S△ABC,選項D正確.綜上,此題得解.
連接AO,如圖所示.
∵△ABC為等腰直角三角形,點O為BC的中點,
∴OA=OC,∠AOC=90°,∠BAO=∠ACO=45°.
∵∠EOA+∠AOF=∠EOF=90°,∠AOF+∠FOC=∠AOC=90°,
∴∠EOA=∠FOC.
在△EOA和△FOC中,
,
∴△EOA≌△FOC(ASA),
∴EA=FC,
∴AE+AF=AF+FC=AC,選項A正確;
∵∠B+∠BEO+∠EOB=∠FOC+∠C+∠OFC=180°,∠B+∠C=90°,∠EOB+∠FOC=180°-∠EOF=90°,
∴∠BEO+∠OFC=180°,選項B正確;
∵△EOA≌△FOC,
∴S△EOA=S△FOC,
∴S四邊形AEOF=S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=S△ABC,選項D正確.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的正方形中,點為對角線上一動點(點與點、不重合),連接,作交射線于點,過點作分別交,于點、,作射線交射線于點
(1)求證:;
(2)當時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了測量一條兩岸平行的河流寬度,三個數(shù)學研究小組設(shè)計了不同的方案,他們在河南岸的點A處測得河北岸的樹H恰好在A的正北方向.測量方案與數(shù)據(jù)如下表:
課題 | 測量河流寬度 | ||
測量工具 | 測量角度的儀器,皮尺等 | ||
測量小組 | 第一小組 | 第二小組 | 第三小組 |
測量方案示意圖 | |||
說明 | 點B,C在點A的正東方向 | 點B,D在點A的正東方向 | 點B在點A的正東方向,點C在點A的正西方向. |
測量數(shù)據(jù) | BC=60m, ∠ABH=70°, ∠ACH=35°. | BD=20m, ∠ABH=70°, ∠BCD=35°. | BC=101m, ∠ABH=70°, ∠ACH=35°. |
(1)哪個小組的數(shù)據(jù)無法計算出河寬?
(2)請選擇其中一個方案及其數(shù)據(jù)求出河寬(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2020年5月16日,“錢塘江詩路”航道全線開通,一艘游輪從杭州出發(fā)前往衢州,線路如圖1所示.當游輪到達建德境內(nèi)的“七里揚帆”景點時,一艘貨輪沿著同樣的線路從杭州出發(fā)前往衢州.已知游輪的速度為20km/h,游輪行駛的時間記為t(h),兩艘輪船距離杭州的路程s(km)關(guān)于t(h)的圖象如圖2所示(游輪在?壳昂蟮男旭偹俣炔蛔儯
(1)寫出圖2中C點橫坐標的實際意義,并求出游輪在“七里揚帆”?康臅r長.
(2)若貨輪比游輪早36分鐘到達衢州.問:
①貨輪出發(fā)后幾小時追上游輪?
②游輪與貨輪何時相距12km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C,G是⊙O上兩點,且弧AC=弧CG,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線;
(2)若,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校舉行“經(jīng)典誦讀”比賽,誦讀材料有:A《唐詩》、B《宋詞》、C《論語》.將A、B、C這三個字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小紅和小亮參加誦讀比賽,比賽時小紅先從中隨機抽取一張卡片,記錄下卡片上的內(nèi)容,放回后洗勻,再由小亮從中隨機抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進行比賽.
(1)小紅誦讀《論語》的概率是 ;
(2)請用列表法或畫樹狀圖的方法,求小紅和小亮誦讀兩個相同材料的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組建了書法、音樂、美術(shù)、舞蹈、演講5個社團,隨機調(diào)查了部分學生.被調(diào)查學生每人都參加且只參加了其中一個社團活動,并將調(diào)查結(jié)果制成了如圖兩幅不完整的統(tǒng)計圖,在扇形統(tǒng)計圖中,“音樂”所對應的扇形圓心角度數(shù)是( )度.
A.25%B.25C.60D.90
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形的四個頂點坐標分別是、、、.函數(shù)(為常數(shù)).
(1)當此函數(shù)的圖象經(jīng)過點時,求此函數(shù)的表達式;
(2)在(1)的條件下,當時,求函數(shù)值的取范圍;
(3)當此函數(shù)的圖象與矩形的邊有兩個交點時,直接出的取值范圍;
(4)記此函數(shù)在范圍內(nèi)的縱坐標為,若存在時,直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com