【題目】某校為慶祝國慶節(jié)舉辦游園活動(dòng),小軍來到摸球兌獎(jiǎng)活動(dòng)場地,李老師對(duì)小軍說:這里有甲、乙兩個(gè)盒子,里面都裝有一些乒乓球,你只能選擇在其中一個(gè)盒子中摸球。獲獎(jiǎng)規(guī)則如下:

甲盒中有白色乒乓球4個(gè),黃色乒乓球1個(gè),一人只能摸一次且一次摸出一個(gè)球,若這個(gè)球?yàn)辄S色球,則可獲得玩具熊一個(gè),否則不得獎(jiǎng);

乙盒中有白色乒乓球2個(gè),黃色乒乓球3個(gè),一人只能摸一次且一次摸出兩個(gè)球,若這兩個(gè)球均為黃色球,則可獲得玩具熊一個(gè),否則不得獎(jiǎng);

請問小軍在哪個(gè)盒子內(nèi)摸球獲得玩具熊的機(jī)會(huì)更大?請用概率知識(shí)說明理由.

【答案】乙盒獲獎(jiǎng)幾率更大.

【解析】

根據(jù)題意可得甲盒獲獎(jiǎng)概率,列舉出乙盒中所有可能出現(xiàn)的情況,找出均為黃色球的情況,根據(jù)概率公式即可求出乙盒獲獎(jiǎng)概率,與甲盒獲獎(jiǎng)概率進(jìn)行比較即可.

甲盒的獲獎(jiǎng)概率為,

1、2表示白色球,3、45表示黃色球,則摸出兩個(gè)球可能出現(xiàn)的情況有:

12、1314、1523、2425、3435、4510種,其中都是黃色球的情況有3種,

∴乙盒的獲獎(jiǎng)概率為,

<

∴乙盒的獲獎(jiǎng)幾率更大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的二次方程.

1)若,且此方程有一個(gè)根為,求的值;

2)若,判斷此方程根的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為的等邊三角形,邊上一動(dòng)點(diǎn),由運(yùn)動(dòng)(與、不重合),延長線上一動(dòng)點(diǎn),與點(diǎn)同時(shí)以相同的速度由延長線方向運(yùn)動(dòng)(不與重合),過,連接

1)若時(shí),求的長;

2)當(dāng)時(shí),求的長;

3)在運(yùn)動(dòng)過程中線段的長是否發(fā)生變化?如果不變,求出線段的長;如果發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為籌備迎新生晚會(huì),同學(xué)們設(shè)計(jì)了一個(gè)圓筒形燈罩,底色漆成白色,然后纏繞紅色油紙.如圖,已知圓筒高108cm,其圓筒底面周長為36cm,如果在表面纏繞油紙4圈,應(yīng)裁剪油紙的最短為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算: ÷ ;
(2)如圖,正方形ABCD中,點(diǎn)E,F(xiàn),G分別在AB,BC,CD上,且∠EFG=90°.求證:△EBF∽△FCG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

(1)如圖①,在正方形ABCD中,對(duì)角線AC=8,則正方形ABCD的面積為   ;

問題探究

(2)如圖②,在四邊形ABCD中,AD=AB,∠DAB=DCB=90°,∠ADC+ABC=180°,若四邊形ABCD的面積為8,求對(duì)角線AC的長;

問題解決

(3)如圖③,四邊形ABCD是張叔叔要準(zhǔn)備開發(fā)的菜地示意圖,其中邊ADAB是準(zhǔn)備用磚來砌的磚墻,且滿足AD=AB,∠DAB=90°,邊DCCB是準(zhǔn)備用現(xiàn)有的長度分別為3米和7米的竹籬笆來圍成的籬笆墻,即DC=3米,CB=7米.按照這樣的想法,張叔叔圍成的菜園里對(duì)角線AC的長是否存在最大值呢?若存在,求出這個(gè)最大值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,CFABF,BEACE,CFBE交于點(diǎn)D.有下列結(jié)論:

①△ABE≌△ACF;②△BDF≌△CDE;③點(diǎn)D在∠BAC的平分線上;④點(diǎn)CAB的中垂線上.

以上結(jié)論正確的有( 。﹤(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線 y=ax2+bx+c 與 x 軸交于A(1,0),B(-3,0),與 y 軸交于C(0,3),頂點(diǎn)是G.
(1)求拋物線的的解析式及頂點(diǎn)坐標(biāo)G.
(2)如圖1,點(diǎn)D(x,y)是線段BG上的動(dòng)點(diǎn)(不與B,G重合),DE⊥x軸于E,設(shè)四邊形OEDC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值.
(3)如圖2,將拋物線 y=ax2+bx+c 向下平移 k 個(gè)單位,平移后的頂點(diǎn)式 G' ,與 x 軸的交點(diǎn)是 A',B' .若△A'B'G' 是直角三角形,求 k 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快5G網(wǎng)絡(luò)建設(shè),某移動(dòng)通信公司在山頂上建了一座5G信號(hào)通信塔AB,山高BE100米(A,B,E在同一直線上),點(diǎn)C與點(diǎn)D分別在E的兩側(cè)(C,E,D在同一直線上),BECDCD之間的距離1000米,點(diǎn)D處測得通信塔頂A的仰角是30°,點(diǎn)C處測得通信塔頂A的仰角是45°(如圖),則通信塔AB的高度約為( 。┟祝▍⒖紨(shù)據(jù):

A.350B.250C.200D.150

查看答案和解析>>

同步練習(xí)冊答案