【題目】某學校用簡單隨機抽樣方法抽取了100名同學,對其日均課外閱讀時間(單位:分鐘)進行調(diào)查,結(jié)果如下:
t | [0,15) | [15,30) | [30,45) | [45,60) | [60,75) | [75,90) |
男同學人數(shù) | 7 | 11 | 15 | 12 | 2 | 1 |
女同學人數(shù) | 8 | 9 | 17 | 13 | 3 | 2 |
若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”.
(1)將頻率視為概率,估計該校4000名學生中“讀書迷”有多少人?
(2)從已抽取的8名“讀書迷”中隨機抽取4位同學參加讀書日宣傳活動. (i)求抽取的4位同學中既有男同學又有女同學的概率;
(ii)記抽取的“讀書迷”中男生人數(shù)為X,求X的分布列和數(shù)學期望.
【答案】
(1)解:設該校4000名學生中“讀書迷”有x人,
則 ,解得x=320,
所以該校4000名學生中“讀書迷”約有320人
(2)解:(。┏槿〉4名同學既有男同學,又有女同學的概率為:
;
(ⅱ)X可取為0,1,2,3;
則 ,
,
,
P(X=3)= = ;
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
數(shù)學期望為
【解析】(1)設該校4000名學生中“讀書迷”有x人,根據(jù)比例關系列出方程求出x的值即可;(2)(。├脤α⑹录母怕视嬎愠槿〉4名同學既有男同學,又有女同學的概率;(ⅱ)根據(jù)題意得出X的可能取值,計算對應的概率,寫出分布列,計算數(shù)學期望值.
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積是12,點D,E,F(xiàn),G分別是BC,AD,BE,CE的中點,則△AFG的面積是( )
A.4.5
B.5
C.5.5
D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜邊AB上取一點D,過點D作DE//BC,交AC于點E.現(xiàn)將△ADE繞點A旋轉(zhuǎn)一定角度到如圖2所示的位置(點D在△ABC的內(nèi)部),使得∠ABD+∠ACD=90°.
(1)①求證:△ABD∽△ACE;
②若CD=1,BD= ,求AD的長;
(2)如圖3,將原題中的條件“AC=BC”去掉,其它條件
不變,設 ,若CD=1,BD=2,AD=3,求k的值;
(3)如圖4,將原題中的條件“∠ACB=90°”去掉,其它條件不變,若 ,設CD=m , BD=n , AD=p , 試探究m , n , p三者之間滿足的等量關系.(直接寫出結(jié)果,不必寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個袋中裝有1紅,2白和2黑共5個小球,這5個小球除顏色外其它都相同,現(xiàn)從袋中任取2個球,則至少取到1個白球的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,已知直線l的極坐標方程為 . (Ⅰ)設P是曲線C上的一個動點,當a=2時,求點P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點均在直線l的右下方,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|.
(1)若a=1,解不等式f(x)≤5;
(2)當a≠0時, ,求滿足g(a)≤4的a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時,直達;動車速度為200千米/小時,行駛180千米后,中途要停靠徐州10分鐘,若動車先出發(fā)半小時,兩車與甲地之間的距離y(千米)與動車行駛時間x(小時)之間的函數(shù)圖象為( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x+3|+|2x﹣1|. (Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com