【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象經(jīng)過點(diǎn)(1,-6).
(1)求m的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記直線與反比例函數(shù)的圖象圍成的區(qū)域?yàn)?/span>W(不含邊界).若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),結(jié)合函數(shù)圖象,直接寫出b的取值范圍.
【答案】(1);(2)或.
【解析】
(1)將點(diǎn)代入反比例函數(shù)的解析式即可得;
(2)先由(1)得出反比例函數(shù)的解析式,再根據(jù)反比例函數(shù)圖象的特點(diǎn)分和兩部分,然后分別根據(jù)整點(diǎn)的定義找出臨界位置,利用待定系數(shù)法求出相應(yīng)的b的值即可得出答案.
(1)由題意,將點(diǎn)代入反比例函數(shù)的解析式得:
解得;
(2)由(1)可知,反比例函數(shù)的解析式為
如圖,整點(diǎn)的坐標(biāo)分別為,
設(shè)直線BC的解析式為
將點(diǎn)代入得,解得
則直線BC的解析式為
同理可得:直線的解析式為
根據(jù)反比例函數(shù)的圖象特點(diǎn),分以下兩部分:
①如圖,當(dāng)時(shí),有兩個(gè)臨界位置:一次函數(shù)經(jīng)過整點(diǎn)A和一次函數(shù)經(jīng)過整點(diǎn)
一次函數(shù)經(jīng)過整點(diǎn)時(shí),,解得
一次函數(shù)經(jīng)過整點(diǎn)時(shí),由上述已求出
則若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),此時(shí)b的取值范圍為
②如圖,當(dāng)時(shí),同樣有兩個(gè)臨界位置:一次函數(shù)經(jīng)過整點(diǎn)和一次函數(shù)經(jīng)過整點(diǎn)
一次函數(shù)經(jīng)過整點(diǎn)時(shí),,解得
一次函數(shù)經(jīng)過整點(diǎn)時(shí),由上述已求出
則若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),此時(shí)b的取值范圍為
綜上,所求的b的取值范圍為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商社電器從廠家購(gòu)進(jìn)了,兩種型號(hào)的空氣凈化器,已知一臺(tái)型空氣凈化器的進(jìn)價(jià)比一臺(tái)型空氣凈化器的進(jìn)價(jià)多元,用元購(gòu)進(jìn)型空氣凈化器和用元購(gòu)進(jìn)型空氣凈化器的臺(tái)數(shù)相同.
(1)求一臺(tái)型空氣凈化器和一臺(tái)型空氣凈化器的進(jìn)價(jià)各為多少元?
(2)商社電器計(jì)劃型凈化器的進(jìn)貨量不少于臺(tái)且是型凈化器進(jìn)貨量的三倍,在總進(jìn)貨款不超過萬(wàn)元的前提下,試問有多少種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為8,M是AB的中點(diǎn),P是BC邊上的動(dòng)點(diǎn),連結(jié)PM,以點(diǎn)P為圓心,PM長(zhǎng)為半徑作⊙P.
(1)當(dāng)BP= 時(shí),△MBP~△DCP;
(2)當(dāng)⊙P與正方形ABCD的邊相切時(shí),求BP的長(zhǎng);
(3)設(shè)⊙P的半徑為x,請(qǐng)直接寫出正方形ABCD中恰好有兩個(gè)頂點(diǎn)在圓內(nèi)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過點(diǎn)的兩條直線分別交軸于,兩點(diǎn),且、兩點(diǎn)的縱坐標(biāo)分別是一元二次方程的兩個(gè)根.
(1)試問:直線與直線是否垂直?請(qǐng)說明理由.
(2)若點(diǎn)在直線上,且,求點(diǎn)的坐標(biāo).
(3)在(2)的條件下,在直線上尋找點(diǎn),使以、、三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)中較長(zhǎng)線段與較短線段長(zhǎng)度的差等于PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分別找一點(diǎn)M,N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為25,內(nèi)部有6個(gè)全等的正方形,小正方形的頂點(diǎn)E、F、G、H分別落在邊AD、AB、BC、CD上,則每個(gè)小正方形的邊長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,連接,將繞點(diǎn)作順時(shí)針方向旋轉(zhuǎn)得到(與重合),且點(diǎn)剛好落在的延長(zhǎng)上,與相交于點(diǎn).
(1)求矩形與重疊部分(如圖1中陰影部分)的面積;
(2)將以每秒2的速度沿直線向右平移,如圖2,當(dāng)移動(dòng)到點(diǎn)時(shí)停止移動(dòng).設(shè)矩形與重疊部分的面積為,移動(dòng)的時(shí)間為,請(qǐng)你直接寫出關(guān)于的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(3)在(2)的平移過程中,是否存在這樣的時(shí)間,使得成為等腰三角形?若存在,請(qǐng)你直接寫出對(duì)應(yīng)的的值,若不存在,請(qǐng)你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)45°后得到△AB’C’,若AB=2,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是___________ (結(jié)果保留π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com