【題目】某旅行社擬在暑假期間面向?qū)W生推出“林州紅旗渠一日游”活動(dòng),收費(fèi)標(biāo)準(zhǔn)如下:

人數(shù)m

0<m≤100

100<m≤200

m>200

收費(fèi)標(biāo)準(zhǔn)(元/人)

90

85

75

甲、乙兩所學(xué)校計(jì)劃組織本校學(xué)生自愿參加此項(xiàng)活動(dòng).已知甲校報(bào)名參加的學(xué)生人數(shù)多于100人,乙校報(bào)名參加的學(xué)生人數(shù)少于100人.經(jīng)核算,若兩校分別組團(tuán)共需花費(fèi)20 800元,若兩校聯(lián)合組團(tuán)只需花費(fèi)18 000元.
(1)兩所學(xué)校報(bào)名參加旅游的學(xué)生人數(shù)之和超過(guò)200人嗎?為什么?
(2)兩所學(xué)校報(bào)名參加旅游的學(xué)生各有多少人?

【答案】
(1)解:這兩所學(xué)校報(bào)名參加旅游的學(xué)生人數(shù)之和超過(guò)200人,理由為:

設(shè)兩校人數(shù)之和為a,

若a>200,則a=18000÷75=240;

若100<a≤200,則a=18000÷85=211 >200,不合題意,

則這兩所學(xué)校報(bào)名參加旅游的學(xué)生人數(shù)之和等于240人,超過(guò)200人


(2)解:設(shè)甲學(xué)校報(bào)名參加旅游的學(xué)生有x人,乙學(xué)校報(bào)名參加旅游的學(xué)生有y人,則

① 當(dāng)100<x≤200時(shí),得

解得 (6分)

②當(dāng)x>200時(shí),得

解得 不合題意,舍去.

答:甲學(xué)校報(bào)名參加旅游的學(xué)生有160人,乙學(xué)校報(bào)名參加旅游的學(xué)生有80人


【解析】(1)由已知分兩種情況討論,即a>200和100<a≤200,得出結(jié)論;(2)根據(jù)兩種情況的費(fèi)用,即x>200和100<x≤200分別設(shè)未知數(shù)列方程組求解,討論得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn) 如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)D恰好落在AB邊上時(shí),填空:
② 線(xiàn)段DE與AC的位置關(guān)系是;
②設(shè)△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數(shù)量關(guān)系是

(2)猜想論證 當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到如圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請(qǐng)你證明小明的猜想.
(3)拓展探究 已知∠ABC=60°,點(diǎn)D是角平分線(xiàn)上一點(diǎn),BD=CD=4,DE∥AB交BC于點(diǎn)E(如圖4).若在射線(xiàn)BA上存在點(diǎn)F,使SDCF=SBDE , 請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=90°,AD=4,連接BD,BD⊥CD,∠ADB=∠C.若P是BC邊上一動(dòng)點(diǎn),則DP長(zhǎng)的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,動(dòng)點(diǎn)P在∠ABC的平分線(xiàn)BD上,動(dòng)點(diǎn)M在BC邊上,若BC=3,∠ABC=45°,則PM+PC的最小值是( )

A. 2 B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線(xiàn)AC,BD相交于O,EF經(jīng)過(guò)點(diǎn)O,分別交AD,BCE,F,已知ABCD的面積是,則圖中陰影部分的面積是  

A. 12 B. 10 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)Ay軸上,Cx軸上,把矩形OABC沿對(duì)角線(xiàn)AC所在的直線(xiàn)翻折,點(diǎn)B恰好落在反比例函數(shù)的圖象上的點(diǎn)處,y軸交于點(diǎn)D,已知,

的度數(shù);

求反比例函數(shù)的函數(shù)表達(dá)式;

Q是反比例函數(shù)圖象上的一點(diǎn),在坐標(biāo)軸上是否存在點(diǎn)P,使以P,Q,C,D為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ABCD中,∠ABC,BCD的平分線(xiàn)分別交AD于點(diǎn)E,FBE,CF相交于點(diǎn)G

(1)求證:BECF;

(2)若AB=a,CF=b,寫(xiě)出求BE的長(zhǎng)的思路

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,,點(diǎn)EAB邊的中點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于DE對(duì)稱(chēng),連接DP、BPCP,下列結(jié)論:;;,其中正確的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市進(jìn)行運(yùn)河帶綠化,計(jì)劃種植銀杏樹(shù)苗,現(xiàn)甲、乙兩家有相同的銀杏樹(shù)苗可供選擇,其具體銷(xiāo)售方案如下:

甲:購(gòu)買(mǎi)樹(shù)苗數(shù)量不超過(guò)500棵時(shí),銷(xiāo)售單價(jià)為800棵;超過(guò)500棵的部分,銷(xiāo)售單價(jià)為700棵.

乙:購(gòu)買(mǎi)樹(shù)苗數(shù)量不超過(guò)1000棵時(shí),銷(xiāo)售單價(jià)為800棵;超過(guò)1000棵的部分,銷(xiāo)售單價(jià)為600棵.

設(shè)購(gòu)買(mǎi)銀杏樹(shù)苗x棵,到兩家購(gòu)買(mǎi)所需費(fèi)用分別為元、

(1)該景區(qū)需要購(gòu)買(mǎi)800棵銀杏樹(shù)苗,若都在甲家購(gòu)買(mǎi)所要費(fèi)用為______元,若都在乙家購(gòu)買(mǎi)所需費(fèi)用為______元;

(2)當(dāng)時(shí),分別求出、x之間的函數(shù)關(guān)系式;

(3)如果你是該景區(qū)的負(fù)責(zé)人,購(gòu)買(mǎi)樹(shù)苗時(shí)有什么方案,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案