【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點(diǎn),連接CD.過(guò)E作EF∥DC交BC的延長(zhǎng)線于F.
(1)證明:四邊形CDEF是平行四邊形;
(2)若四邊形CDEF的周長(zhǎng)是18cm,AC的長(zhǎng)為6cm,求線段AB的長(zhǎng)度.
【答案】(1)見(jiàn)解析;(2)AB=10cm.
【解析】
(1)由三角形中位線定理推知ED∥FC,然后結(jié)合已知條件“EF∥DC”,利用兩組對(duì)邊相互平行得到四邊形DCFE為平行四邊形;
(2)根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半得到AB=2DC,即可得出四邊形DCFE的周長(zhǎng)=AB+BC,故BC=18-AB,然后根據(jù)勾股定理即可求得.
(1)∵D、E分別是AB、AC的中點(diǎn),
∴ED是Rt△ABC的中位線,
∴ED∥FC,
又 EF∥DC,
∴四邊形CDEF是平行四邊形;
(2)∵四邊形CDEF是平行四邊形;
∴DC=EF,DE=CF
∵DC是Rt△ABC斜邊AB上的中線,
∴AB=2DC,
∵D、E分別是AB、AC的中點(diǎn),
∴BC=2DE,
∴四邊形DCFE的周長(zhǎng)=AB+BC,
∵四邊形DCFE的周長(zhǎng)為18cm,AC的長(zhǎng)6cm,
∴BC=18﹣AB,
∵在Rt△ABC中,∠ACB=90°,
∴AB2=BC2+AC2,即AB2=(18﹣AB)2+62,
解得:AB=10cm,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為6的正方形,點(diǎn)E在邊AB上,BE=4,過(guò)點(diǎn)E作EF∥BC,分別交BD,CD于點(diǎn)G,F兩點(diǎn),若M,N分別是DG,CE的中點(diǎn),則MN的長(zhǎng)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E、F分別是邊BC、CD上的點(diǎn),且CE=CF,連接AE,AF,取AE的中點(diǎn)M,EF的中點(diǎn)N,連接BM,MN.
(1)請(qǐng)判斷線段BM與MN的數(shù)量關(guān)系和位置關(guān)系,并予以證明.
(2)如圖2,若點(diǎn)E在CB的延長(zhǎng)線上,點(diǎn)F在CD的延長(zhǎng)線上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A、B分別是x軸、y軸上的動(dòng)點(diǎn),點(diǎn)C、D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCD(A、B、C、D各點(diǎn)依次排列)為正方形時(shí),稱這個(gè)正方形為此函數(shù)圖象的伴侶正方形。如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)伴侶正方形.
(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長(zhǎng);
(2)若某函數(shù)是反比例函數(shù)(k>0),它的圖象的伴侶正方形為ABCD,點(diǎn)D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;
(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個(gè)點(diǎn)坐標(biāo)為(3,4).寫(xiě)出伴侶正方形在拋物線上的另一個(gè)頂點(diǎn)坐標(biāo)_____,寫(xiě)出符合題意的其中一條拋物線解析式_____,并判斷你寫(xiě)出的拋物線的伴侶正方形的個(gè)數(shù)是奇數(shù)還是偶數(shù)?_____.(本小題只需直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左邊), 點(diǎn)P在拋物線上.
(1)點(diǎn)C是x軸上一個(gè)動(dòng)點(diǎn),四邊形ACPQ是正方形,則滿足條件 的點(diǎn)Q的坐標(biāo)是______.
(2)連結(jié)AP,以AP為一條對(duì)角線作平行四邊形AMPN,使點(diǎn)M在 以點(diǎn)(1,0),(0,1)為端點(diǎn)的線段上,則當(dāng)點(diǎn)N的縱坐標(biāo)取最小值時(shí),N的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,E為射線BC上一點(diǎn),DF⊥AE于F,連接DE.
(1)如圖1,若E在線段BC上,且CE=EF,求證:AD=AE;
(2)若AB=6,AD=10,在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,連接BF.
①當(dāng)△ABF是以AB為底的等腰三角形時(shí),求BE的長(zhǎng);
②當(dāng)BF∥DE時(shí),若S△ADF=m,S△DCE=n,探究m﹣n的值并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游景點(diǎn)門(mén)票是50元,凡購(gòu)買(mǎi)5張門(mén)票以上(含5張),景點(diǎn)售票處推出兩種優(yōu)惠銷(xiāo)售辦法,第一種:“3張按原價(jià),其余按原價(jià)的七折優(yōu)惠”;第二種:“全部按原價(jià)的八折優(yōu)惠”.
問(wèn):(1)購(gòu)買(mǎi)門(mén)票張數(shù)在什么范圍選用第二種優(yōu)惠辦法;
(2)若購(gòu)10張門(mén)票,則選用哪種方法費(fèi)用較少(請(qǐng)寫(xiě)出理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程組的解滿足為非正數(shù),為負(fù)數(shù).
(1)求的取值范圍;
(2)化簡(jiǎn):.
(3)在m的取值范圍內(nèi),當(dāng)m取何整數(shù)時(shí),不等式2mx+x>2m+1的解為x<1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有點(diǎn)B(-2,0)和y軸上的動(dòng)點(diǎn)A(0,a),其中a>0,以點(diǎn)A為直角頂點(diǎn)在第二象限內(nèi)作等腰直角三角形ABC,設(shè)點(diǎn)C的坐標(biāo)為(c,d).
(1)當(dāng)a=4時(shí),則點(diǎn)C的坐標(biāo)為( , );
(2)動(dòng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,試判斷c+d的值是否發(fā)生變化?若不變,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.
(3)當(dāng)a=4時(shí),在坐標(biāo)平面內(nèi)是否存在點(diǎn)P(不與點(diǎn)C重合),使△PAB與△ABC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com