如圖,直線a、b被直線c所截,現(xiàn)給出下列四種條件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判斷a∥b的條件共有種.


  1. A.
    1種
  2. B.
    2種
  3. C.
    3種
  4. D.
    4種
B
分析:在復(fù)雜的圖形中具有相等關(guān)系的兩角首先要判斷它們是否是同位角或內(nèi)錯(cuò)角,被判斷平行的兩直線是否由“三線八角”而產(chǎn)生的被截直線.
解答:①若∠2=∠6,則根據(jù)“同位角相等,兩直線平行”可以判定a∥b.故①正確;
②若∠2=∠8時(shí),則∠4=∠8,所以根據(jù)“同位角相等,兩直線平行”可以判定a∥b.故②正確;
③∠1與∠4互為鄰補(bǔ)角,所以根據(jù)∠1+∠4=180°不能判定a∥b.故③錯(cuò)誤;
④若∠3=∠8時(shí),則∠3=∠6,根據(jù)“同旁內(nèi)角相等”不能判定a∥b.故④錯(cuò)誤;
綜上所述,正確的說法有2個(gè).
故選B.
點(diǎn)評(píng):本題考查了平行線的判定.正確識(shí)別“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是正確答題的關(guān)鍵,不能遇到相等或互補(bǔ)關(guān)系的角就誤認(rèn)為具有平行關(guān)系,只有同位角相等、內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,是一個(gè)掛在墻壁上時(shí)鐘的示意圖.O是其秒針的轉(zhuǎn)動(dòng)中心,M是秒針的另一端,OM=8cm,l是過點(diǎn)O的鉛直直線.現(xiàn)有一只螞蟻P在秒針OM上爬行,螞蟻P到點(diǎn)O的距離與M到l的距離始終相等.則1分鐘的時(shí)間內(nèi),螞蟻P被秒針OM攜帶的過程中移動(dòng)的路程(非螞蟻在秒針上爬行的路程)是
16π
16π
 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直AB、CD被直線EF所截,GE平分∠AEF,GF平分∠EFC,∠1+∠2=90°,AB∥CD嗎?為什么?
解:因?yàn)镚E平分∠AEF,GF平分∠EFC(已知),
所以∠AEF=2∠
1
1
,
∠EFC=2∠
2
2
,
所以∠AEF+∠EFC=
2(∠1+∠2)(
2(∠1+∠2)(
( 等式性質(zhì) ),
因?yàn)椤?+∠2=90°(已知),
所以∠AEF+∠EFC=
180°
180°
°
所以AB∥CD
同旁內(nèi)角互補(bǔ),兩直線平行
同旁內(nèi)角互補(bǔ),兩直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,已知直AB、CD被直線EF所截,GE平分∠AEF,GF平分∠EFC,∠1+∠2=90°,AB∥CD嗎?為什么?
解:因?yàn)镚E平分∠AEF,GF平分∠EFC(已知),
所以∠AEF=2∠________,
∠EFC=2∠________,
所以∠AEF+∠EFC=________( 等式性質(zhì) ),
因?yàn)椤?+∠2=90°(已知),
所以∠AEF+∠EFC=________°
所以AB∥CD________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直AB、CD被直線EF所截,GE平分∠AEF,GF平分∠EFC,∠1+∠2=90°,ABCD嗎?為
精英家教網(wǎng)
什么?
因?yàn)镚E平分∠AEF,GF平分∠EFC(已知),
所以∠AEF=2∠______,
∠EFC=2∠______,
所以∠AEF+∠EFC=______( 等式性質(zhì) ),
因?yàn)椤?+∠2=90°(已知),
所以∠AEF+∠EFC=______°
所以ABCD______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年理科實(shí)驗(yàn)班自主招生考試數(shù)學(xué)試卷(一)(解析版) 題型:填空題

如圖,是一個(gè)掛在墻壁上時(shí)鐘的示意圖.O是其秒針的轉(zhuǎn)動(dòng)中心,M是秒針的另一端,OM=8cm,l是過點(diǎn)O的鉛直直線.現(xiàn)有一只螞蟻P在秒針OM上爬行,螞蟻P到點(diǎn)O的距離與M到l的距離始終相等.則1分鐘的時(shí)間內(nèi),螞蟻P被秒針OM攜帶的過程中移動(dòng)的路程(非螞蟻在秒針上爬行的路程)是     cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案