【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(-2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象交于點C,點C的橫坐標為1.
(1)求k、b的值;
(2)若點D在y軸上,且滿足S△COD=S△BOC,求點D的坐標.
【答案】(1);(2)點D的坐標為(0,12)或(0,12).
【解析】
(1)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,根據(jù)點A、C的坐標,利用待定系數(shù)法即可求出k、b的值;
(2)首先求出點B的坐標,設(shè)點D的坐標為(0,m),根據(jù)三角形的面積公式結(jié)合S△COD=S△BOC,即可得出關(guān)于m的一元一次方程,解之即可得出m的值,進而可得出點D的坐標.
解:(1)當x=1時,y=3x=3,
∴點C的坐標為(1,3),
將A(2,6)、C(1,3)代入y=kx+b,得:,
解得:;
(2)由(1)可知直線AB解析式為:y=-x+4,
當y=0時,有x+4=0,
解得:x=4,
∴點B的坐標為(4,0),
設(shè)點D的坐標為(0,m),
∵S△COD=S△BOC,即,
解得:m=±12,
∴點D的坐標為(0,12)或(0,12).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作發(fā)現(xiàn):如圖,已知△ABC和△ADE均為等腰三角形,AB=AC,AD=AE,將這兩個三角形放置在一起,使點B,D,E在同一直線上,連接CE.
(1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求證:△BAD≌△CAE;
(2)在(1)的條件下,求∠BEC的度數(shù);
拓廣探索:(3)如圖2,若∠CAB=∠EAD=120°,BD=4,CF為△BCE中BE邊上的高,請直接寫出EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F,取EF的中點G,連接CG,BG,BD,DG,下列結(jié)論:
①BE=CD;
②∠DGF=135°;
③△BEG≌△DCG;
④∠ABG+∠ADG=180°;
⑤若,則3S△BDG=13S△DGF.
其中正確的結(jié)論是_____.(請?zhí)顚懰姓_結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是等邊三角形內(nèi)一點,,連結(jié).
(1)求的度數(shù)
(2)如圖2,以為斜邊在外作等腰直角,連結(jié)
①請判斷的形狀,并說明理由
②若,求點到的距離
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.動點在邊上,以點為圓心,長為半徑的分別交、于點、,連接.
若點為邊上的中點(如圖),請你判斷直線與的位置關(guān)系,并證明你的結(jié)論;
當時(如圖),請你求出此時弦的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店用960元購進一批服裝,并以每件46元的價格全部售完由于服裝暢銷,服裝店又用2220元,再次以比第一次進價多5元的價格購進服裝,數(shù)量是第一次購進服裝的2倍,仍以每件46元的價格出售.
該服裝店第一次購買了此種服裝多少件?
兩次出售服裝共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC在平面直角坐標系中的位置如圖所示.
(1)把△ABC向下平移2個單位長度得到△A1B1C1,請畫出△A1B1C1;
(2)請畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2,并寫出A2的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】奉節(jié)臍橙是重慶市奉節(jié)縣特產(chǎn),中國地理標志產(chǎn)品,眼下,正值奉節(jié)臍橙銷售旺季,某商家看準商機,第一次用4800元購進一批奉節(jié)臍橙,銷售良好,于是第二次又用12000元購進一批奉節(jié)臍橙,但此時進價比第一次漲了2元,所購進的數(shù)量恰好是第一次購進數(shù)量的兩倍.
(1)求第一次購進奉節(jié)臍橙的進價.
(2)實際銷售中,兩次售價均相同,在銷售過程中,由于消費者挑選后,果品下降,第一批奉節(jié)臍橙的最后100千克八折售出,第二批奉節(jié)臍橙的最后800千克九折售出,若售完這兩批奉節(jié)臍橙的獲利不低于9400元,則售價至少為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com