【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB為12m,拱高CD為4m.
(1)求拱橋的半徑;
(2)有一艘寬為5m的貨船,船艙頂部為長(zhǎng)方形,并高出水面3.4m,則此貨船是否能順利通過(guò)此圓弧形拱橋,并說(shuō)明理由;
【答案】(1);(2)能通過(guò),理由見(jiàn)解析.
【解析】
(1)如圖,O是弧AB所在圓的圓心,連接OC,OB,設(shè)OB=OC=r,由垂徑定理可得BD=6m,在Rt△BOD中,根據(jù)勾股定理列出方程求解即可;
(2)連接ON,根據(jù)題意求出OE,然后利用勾股定理求出EN即可得出結(jié)論.
解:(1)如圖,O是弧AB所在圓的圓心,連接OC,OB,
由題意可知,O、C、D三點(diǎn)共線(xiàn)且OC⊥AB,
∴D為AB中點(diǎn),
∵AB=12m,
∴BD=6m.
又∵CD=4m,
設(shè)OB=OC=r,則OD=(r4)m.
在Rt△BOD中,根據(jù)勾股定理得:r2=(r4)2+62,
解得r=m;
(2)此貨船能順利通過(guò)此圓弧形拱橋,
理由:如圖,連接ON,
∵CD=4m,船艙頂部為長(zhǎng)方形并高出水面3.4m,
∴CE=43.4=0.6(m),
∴OE=rCE=6.50.6=5.9(m),
在Rt△OEN中,EN2=ON2OE2=7.44,
∴EN=,
∴MN=2EN=5.4 m>5m,
∴此貨船能順利通過(guò)此圓弧形拱橋.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠B=∠C=30°,點(diǎn)O是BC邊上一點(diǎn),以點(diǎn)O為圓心、OB為半徑的圓經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)D.
⑴ 試說(shuō)明AC與⊙O相切;
⑵ 若,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線(xiàn)裁剪成九塊,其中有兩塊是邊長(zhǎng)都為m的大正方形,兩塊是邊長(zhǎng)都為n的小正方形,五塊是長(zhǎng)為m,寬為n的全等小矩形,且m>n.(以上長(zhǎng)度單位:cm)
(1)用含m,n的代數(shù)式表示所有裁剪線(xiàn)(圖中虛線(xiàn)部分)的長(zhǎng)度之和;
(2)觀(guān)察圖形,發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 ;
(3)若每塊小矩形的面積為10cm2,四個(gè)正方形的面積和為58cm2,試求(m+n)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)寫(xiě)出方程ax2+bx+c=0的兩個(gè)根;
(2)寫(xiě)出y隨x的增大而減小的自變量x的取值范圍;
(3)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的內(nèi)切圓⊙O與BC、CA、AB分別相切于點(diǎn)D、E、F,且AB=5,BC=13,CA=12,則陰影部分(即四邊形AEOF)的面積是( )
A.4B.6.25C.7.5D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱(chēng)軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正方形ABCD和正方形BEFG如圖(一)所示放置,已知AB=5,BE=6,將正方形BEFG繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一定的角度α(0°≤α≤360°)到圖(二)所示:連接AE,CG,
(1)求線(xiàn)段AE與CG的關(guān)系,并給出證明
(2)當(dāng)旋轉(zhuǎn)至某一個(gè)角度時(shí),點(diǎn)C,E,G在同一條直線(xiàn)上,請(qǐng)畫(huà)出示意圖形,并求出此時(shí)AE的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個(gè)條件,不正確的是( )
A.∠ABD=∠CB.∠ADB=∠ABCC.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABO的三個(gè)頂點(diǎn)坐標(biāo)分別為:A(2,3)、B(3,1)、O(0,0).
(1)將△ABO向左平移4個(gè)單位,畫(huà)出平移后的△A1B1O1.
(2)將△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后得到的△A2B2O.此時(shí)四邊形ABA2B2的形狀是 .
(3)在平面上是否存在點(diǎn)D,使得以A、B、O、D為頂點(diǎn)的四邊形是平行四邊形,若存在請(qǐng)直接寫(xiě)出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com