【題目】如圖,將矩形紙片ABCD(AD>DC)的一角沿著過(guò)點(diǎn)D的直線折疊,使點(diǎn)ABC邊上的點(diǎn)E重合,折痕交AB于點(diǎn)F.BE:EC=m:n,則AF:FB=

【答案】

【解析】

由折疊得,AFFB=EFFB.證明△BEF∽△CDE可得EFFB=DEEC,由BEEC=mn可求解.

BE=1,EC=2,∴BC=3

BC=AD=DE,∴DE=3

sinEDC=;

∵∠DEF=90°,∴∠BEF+CED=90°

又∠BEF+BFE=90°,

∴∠BFE=CED.又∠B=C,

∴△BEF∽△CDE

EFFB=DEEC

BEEC=mn,

∴可設(shè)BE=mk,EC=nk,則DE=m+nk

EFFB=DEEC=

AF=EF

AFFB=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB90°,EAB的中點(diǎn),

1)求證:AC2ABAD

2)求證:CEAD;

3)若AD4,AB6,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,點(diǎn)E是線段AC上的一個(gè)動(dòng)點(diǎn)且k0k1),點(diǎn)F在線段BC上,且DEFH為矩形;過(guò)點(diǎn)EMNBC,分別交AD,BC于點(diǎn)MN

1)求證:△MED∽△NFE;

2)當(dāng)EFFC時(shí),求k的值.

3)當(dāng)矩形EFHD的面積最小時(shí),求k的值,并求出矩形EFHD面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)慶期間,某風(fēng)景區(qū)推出兩種旅游觀光活動(dòng)付費(fèi)方式:若人數(shù)不超過(guò)20人,人均繳費(fèi)500元;若人數(shù)超過(guò)20人,則每增加一位旅客,人均收費(fèi)降低10元,但是人均收費(fèi)不低于350元.現(xiàn)在某單位在國(guó)慶期間組織一批貢獻(xiàn)突出的職工到該景區(qū)旅游觀光,支付了12000元觀光費(fèi),請(qǐng)問(wèn):該單位一共組織了多少位職工參加旅游觀光活動(dòng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】游泳是一項(xiàng)深受青少年喜愛(ài)的體育運(yùn)動(dòng),某中學(xué)為了加強(qiáng)學(xué)生的游泳安全意識(shí),組織學(xué)生觀看了紀(jì)實(shí)片孩子,請(qǐng)不要私自下水”,并于觀看后在本校的名學(xué)生中作了抽樣調(diào)查.制作了下面兩個(gè)不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)這兩個(gè)統(tǒng)計(jì)圖回答以下問(wèn)題:

(I)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生

(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;

(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校名學(xué)生中大約有多少人結(jié)伴時(shí)會(huì)下河學(xué)游泳”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),對(duì)稱軸為,則下列結(jié)論中正確的是(

A.

B. 當(dāng)時(shí),的增大而增大

C.

D. 是一元二次方程的一個(gè)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,邊長(zhǎng)為1,∠A60,順次連接菱形ABCD各邊中點(diǎn),可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點(diǎn),可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點(diǎn),可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,,則四邊形A2019B2019C2019D2019的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點(diǎn).是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)軸的平行線,交直線于點(diǎn),連接,若的面積為,則點(diǎn)的坐標(biāo)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),與軸交于兩點(diǎn)(點(diǎn)軸正半軸上),為等腰直角三角形,且面積為,現(xiàn)將拋物線沿方向平移,平移后的拋物線過(guò)點(diǎn)時(shí),與軸的另一點(diǎn)為,其頂點(diǎn)為,對(duì)稱軸與軸的交點(diǎn)為

、的值.

連接,試判斷是否為等腰三角形,并說(shuō)明理由.

現(xiàn)將一足夠大的三角板的直角頂點(diǎn)放在射線或射線上,一直角邊始終過(guò)點(diǎn),另一直角邊與軸相交于點(diǎn),是否存在這樣的點(diǎn),使以點(diǎn)、為頂點(diǎn)的三角形與全等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案