【題目】201923日至2019220日,第一屆成都金沙太陽節(jié)在金沙遺址博物館成功舉辦,用世界文明展覽,主題燈展,園林花藝,美食演繹等一系列文化活動,與瑪雅這一著名的中美洲文明結(jié)下不解之緣,為成都人打造了一個博物館里的文化年”.春節(jié)當天,小杰于下午點乘車從家出發(fā),當天按原路返回.如圖,是小杰出行的過程中,他距家的距離(千米)與他離家的時間(小時)之間的圖像.根據(jù)圖像,完成下面的問題:

1)小杰家距金沙遺址博物館 千米,他乘車去金沙遺址博物館的速度是 千米/小時;

2)已知晚上點時,小杰距家千米,請通過計算說明他何時才能回到家?

3)請直接寫出小杰回家過程中的關(guān)系式.

【答案】1)小杰家距金沙遺址博物館千米,他乘車去金沙遺址博物館的速度是千米/小時;(2)小杰要晚上分才能回到家;(3

【解析】

(1)根據(jù)圖像即可作答,v=.

2)根據(jù)圖像進行計算即可.

3)根據(jù)速度=路程時間的等量關(guān)系可得,化簡即可.

1)小杰家距金沙遺址博物館千米.

他乘車去金沙遺址博物館的速度是181.5=千米/小時;

2

所以,小杰要晚上分才能回到家.

3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)是(  )

①若某數(shù)的相反數(shù)的絕對值與其絕對值的相反數(shù)相等,則此數(shù)為零;

②若a≠0,b≠0,則a+b≠0

③一個有理數(shù)的絕對值一定大于這個數(shù);

④近似數(shù)2.0304個有效數(shù)字,它們分別是2,0,3,0;

⑤若2.009≈4.036,則2009≈4036000;

⑥當a≠1時,|a-1||1-a|的差沒有倒數(shù).

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,BC,垂足分別為D、F23180,試說明:GDCB,請補充說明過程,并在括號內(nèi)填上相應的理由。

解:ADBC,EFBC(已知)

ADBEFB90( ),

EF//AD( ),

2180( ),

23180(已知),

13( ),

AB// ( ),

∴∠GDC=∠B( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于X的一元二次方程為: 。

(1)當方程有兩實數(shù)根時,求的取值范圍;

(2)任取一個值,求出方程的兩個不相等實數(shù)根。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中,裝有三個分別標記為1”、“2”3”的球,這三個球除了標記不同外,其余均相同.攪勻后,從中摸出一個球,記錄球上的標記為后,放回袋中并攪勻,再從中摸出一個球,再次記錄球上的標記為,最終結(jié)果記錄為

1請用畫樹狀圖列表等方法寫出上述實驗中所記錄球上標記的所有可能的結(jié)果;

2若將記錄結(jié)果看成平面直角坐標系中的一點,求是第二象限內(nèi)的點的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生對各種球類運動的喜愛程度,小明采取隨機抽樣的方法對他所在學校的部分學生進行問卷調(diào)查(每個被調(diào)查的學生必須選擇而且只能選擇其中一種項目),對調(diào)查結(jié)果進行統(tǒng)計后,繪制了下面的統(tǒng)計圖(1)和圖(2).

1)此次被調(diào)查的學生共有___人,m_____

2)求喜歡“乒乓球”的學生的人數(shù),并將條形統(tǒng)計圖補充完整;

3)若該校有2000名學生,估計全校喜歡“足球”的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象經(jīng)過A、B兩點,與x軸交于點C

1)寫出點A、BC的坐標;

2)求此一次函數(shù)的解析式;

3)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)求證:三角形三個內(nèi)角的和等于180°

2)閱讀材料并回答問題:

如圖,把△ABC的一邊BC延長,得到∠ACD.像這樣,三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角,在每個頂點處取這個三角形的一個外角,它們的和叫做這個三角形的外角和.補全圖形并求△ABC外角和

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

同步練習冊答案