如圖,D,E分別是△ABC的邊AC和BC的中點(diǎn),已知DE=2,則AB=( )

A.1
B.2
C.3
D.4
【答案】分析:根據(jù)三角形中位線定理三角形的中位線平行于第三邊,并且等于第三邊的一半可知,ED=BC,進(jìn)而由DE的值求得AB.
解答:解:∵D,E分別是△ABC的邊AC和BC的中點(diǎn),
∴DE是△ABC的中位線,
∵DE=2,
∴AB=2DE=4.
故選D.
點(diǎn)評(píng):本題主要考查三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質(zhì)與線段的中點(diǎn)及平行線緊密相連,因此,它在幾何圖形的計(jì)算及證明中有著廣泛的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,E、F分別是等腰△ABC的腰AB、AC的中點(diǎn).用尺規(guī)在BC邊上求作一點(diǎn)M,使四邊形AEMF為菱形.
(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:AB、AC分別是⊙O的直徑和弦,D為弧AC上一點(diǎn),DE⊥AB于點(diǎn)H,交⊙O于點(diǎn)E,交AC于點(diǎn)F.P為ED延長(zhǎng)線上一點(diǎn),連PC.
(1)若PC與⊙O相切,判斷△PCF的形狀,并證明.
(2)若D為弧AC的中點(diǎn),且
BC
AB
=
3
5
,DH=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB和AC分別是⊙O的直徑和弦,OD⊥AC于D點(diǎn),若OA=4,∠A=30°,則BD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,E、F分別是正方形ABCD邊BC、AD上的點(diǎn),且BE=DF
求證:(1)△ABE≌△CDF;
      (2)AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

桌上放著一個(gè)圓柱和一個(gè)長(zhǎng)方體,如圖(1),請(qǐng)說(shuō)出下列三幅圖(如圖(2))分別是從哪個(gè)方向看到的.

查看答案和解析>>

同步練習(xí)冊(cè)答案