【題目】如圖,在邊長為的正方形中,點為靠近點的四等分點,點中點,將沿翻折得到連接則點所在直線距離為________________.

【答案】

【解析】

延長BC于點M,連接FM,延長DA的延長線于點P,作DNCP,先證明,利用相似的性質(zhì)求出,然后證明,利用相似的性質(zhì)求出EP,從而得到DP的長,再利用勾股定理求出CP的長,最后利用等面積法計算DN即可.

如圖,延長BC于點M,連接FM,延長DA的延長線于點P,作DNCP,

由題可得,,,

,

FAB中點,

,

又∵FM=FM,

HL),

,

由折疊可知,,

,

又∵

,

,

AD=4E為四等分點,

,

,

,

,

,,

,

,即,

EP=6,

DP=EP+DE=7,

中,

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在⊙O中,BC=2,AB=AC,點DAC上的動點,且cosB=

1)求AB的長度;

2)求ADAE的值;

3)過A點作AHBD,求證:BH=CD+DH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民選擇家用凈水器,光明商場計劃從生產(chǎn)廠家購進甲、乙兩種型號的家用凈水器,甲型號凈水器進價為160/臺,乙型號凈水器進價為280/臺,經(jīng)過協(xié)商溝通,生產(chǎn)廠家拿出了兩種優(yōu)惠方案:第一種優(yōu)惠方案:甲、乙兩種型號凈水器均按進價的8折收費;第二種優(yōu)惠方案:甲型號凈水器按原價收費,乙型號凈水器的進貨量超過10臺后超過的部分按進價的6折收費.

光明商場只能選擇一種優(yōu)惠方案,已知光明商場計劃購進甲型號凈水器數(shù)量是乙型號凈水器數(shù)量的1.5倍,設(shè)光明商場購進乙型號凈水器臺,選擇第一種優(yōu)惠方案所需費用為片元,選擇第二種優(yōu)惠方案所需費用為元.

1)分別求出、的關(guān)系式:

2)光明商場計劃購進乙型號凈水器40臺,請你為光明商場選擇合適的優(yōu)惠方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點.

(Ⅰ)如圖①,過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB32°,求∠P的大小;

(Ⅱ)如圖②,D為優(yōu)弧ADC上一點,且DO的延長線經(jīng)過AC的中點E,連接DCAB相交于點P,若∠CAB16°,求∠DPA的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校小偉同學(xué)酷愛健身,一天去爬山鍛煉,在出發(fā)點C處測得山頂部A的仰角為30度,在爬山過程中,每一段平路(CD、EF、GH)與水平線平行,每一段上坡路(DE、FG、HA)與水平線的夾角都是45度,在山的另一邊有一點BB、C、D同一水平線上),斜坡AB的坡度為21,且AB長為900,其中小偉走平路的速度為65.7/分,走上坡路的速度為42.3/分.則小偉從C出發(fā)到坡頂A的時間為( 。▓D中所有點在同一平面內(nèi)1.41,1.73

A.60分鐘B.70分鐘C.80分鐘D.90分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,為對角線,,點分別為邊上的點,連接平分.

1)如圖,若,求平行四邊形的面積.

2)如圖,若求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.

1)求證:BG=DE

2)若EAD中點,FH=2,求菱形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,已知:在中,,分別在上,連接,點為線段的中點,連接,則線段之間的數(shù)量關(guān)系是 ,位置關(guān)系是

2)如圖2所示,已知:正方形斜邊的中點與點重合,直角頂點落在正方形的邊上,的兩直角邊分別交邊于兩點(與點重合),求證:

3)如圖3,若將繞著點逆時針旋轉(zhuǎn),兩直角邊分別交邊于兩點,如圖3所示:判斷四條線段之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】行駛中的汽車,在剎車后由于慣性的原因,還要繼續(xù)向前滑行一段距離才能停住,這段距離稱為“剎車距離”.為了測定某種型號汽車的剎車性能,對這種汽車的剎車距離進行測試,測得的數(shù)據(jù)如下表:

剎車時車速(千米/時)

0

5

10

15

20

25

30

剎車距離(米)

0

0.1

0.3

0.6

1

1.6

2.1

(1)在如圖所示的直角坐標系中,以剎車時車速為橫坐標,以剎車距離為縱坐標,描出這些數(shù)據(jù)所表示的點,并用平滑的曲線連結(jié)這些點,得到某函數(shù)的大致圖象;

(2)測量必然存在誤差,通過觀察圖象估計函數(shù)的類型,求出一個大致滿足這些數(shù)據(jù)的函數(shù)表達式;

(3)一輛該型號汽車在高速公路上發(fā)生交通事故,現(xiàn)場測得剎車距離約為40米,已知這條高速公路限速100千米/時,請根據(jù)你確定的函數(shù)表達式,通過計算判斷在事故發(fā)生時,汽車是否超速行駛.

查看答案和解析>>

同步練習(xí)冊答案