已知如圖,AB、AC分別是⊙O的直徑和切線,BC交⊙O于D.AB=8,AC=6,則CD的長(zhǎng)為( )

A.3
B.4
C.9
D.3.6
【答案】分析:先連接AD,由于AB是直徑,AC是切線,那么可知∠ADB=90°,∠CAB=90°,在Rt△ABC中利用勾股定理易求BC,而∠ABD=∠CBA,∠ADB=∠CAB,易證△ABD∽△CBA,利用比例線段可求BD,進(jìn)而可求CD.
解答:解:如右圖所示,連接AD,
∵AB是直徑,AC是切線,
∴∠ADB=90°,∠CAB=90°,
在Rt△ABC中,AC=6,AB=8,那么BC==10,
∵∠ABD=∠CBA,∠ADB=∠CAB,
∴△ABD∽△CBA,
∴AB:BD=BC:AB,
∴BD===,
∴CD=BC-BD=10-==3.6.
故選D.
點(diǎn)評(píng):本題考查了勾股定理、圓周角定理、切線的性質(zhì)、相似三角形的判定和性質(zhì).解題的關(guān)鍵是連接AD,構(gòu)造直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,AB、AC分別是⊙O的直徑和切線,BC交⊙O于D.AB=8,AC=6,則CD的長(zhǎng)為(  )
A、3B、4C、9D、3.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知如圖,ABAC,ÐBAC90°,AE是過A點(diǎn)的一條直線,且B、CDE的異側(cè),BD^AED,CE^AEE,求證:BDDE+CE

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:047

已知如圖,AB=AC,∠BAC=90°,AE是過A點(diǎn)的一條直線,且B、C在DE的異側(cè),BD⊥AE于D,CE⊥AE于E,求證:BD=DE+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:證明題

已知如圖,AB:AE=AC:AD,∠BAD=∠CAE,求證∠ACB=∠AED

查看答案和解析>>

同步練習(xí)冊(cè)答案