已知直線y=kx+b(k≠0)與x軸的交點在x軸的正半軸上,下列結論:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中可能正確結論的個數(shù)是

[  ]

A.1個
B.2個
C.3個
D.4個
答案:B
解析:

直線ykxb(k0)x軸的交點在x軸的正半軸上分為兩種情況:①k>0,b<0;②k<0,b>0

正確答案B


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知直線y=kx+b經過點(1,-1)和(2,-4).

(1)求直線的解析式;(2)求直線與x軸和y軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

 已知直線y=kx-3與x軸交于點A(4,0),與y軸交于點C,拋物線經過點A和點C,動點P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點B向點A運動,點Q由點C沿線段CA向點A運動且速度是點P運動速度的2倍。

1.(1)求此拋物線的解析式和直線的解析式;                 

2.(2)如果點P和點Q同時出發(fā),運動時間為t(秒),試問當t為何值時,△PQA是直角三角形;

3.(3)在直線CA上方的拋物線上是否存在一點D,使得△ACD的面積最大,若存在,求出點D坐標;若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直線y=kx-3與x軸交于點A(4,0),與y軸交于點C,拋物線經過點A和點C,動點P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點B向點A運動,點Q由點C沿線段CA向點A運動且速度是點P運動速度的2倍。
【小題1】(1)求此拋物線的解析式和直線的解析式;   
【小題2】(2)如果點P和點Q同時出發(fā),運動時間為t(秒),試問當t為何值時,△PQA是直角三角形;
【小題3】(3)在直線CA上方的拋物線上是否存在一點D,使得△ACD的面積最大,若存在,求出點D坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京市工大附中第一中學九年級上學期期中考試數(shù)學卷 題型:解答題

已知直線y=kx-3與x軸交于點A(4,0),與y軸交于點C,拋物線經過點A和點C,動點P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點B向點A運動,點Q由點C沿線段CA向點A運動且速度是點P運動速度的2倍。
【小題1】(1)求此拋物線的解析式和直線的解析式;   
【小題2】(2)如果點P和點Q同時出發(fā),運動時間為t(秒),試問當t為何值時,△PQA是直角三角形;
【小題3】(3)在直線CA上方的拋物線上是否存在一點D,使得△ACD的面積最大,若存在,求出點D坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年北京市九年級上學期期中考試數(shù)學卷 題型:解答題

 已知直線y=kx-3與x軸交于點A(4,0),與y軸交于點C,拋物線經過點A和點C,動點P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點B向點A運動,點Q由點C沿線段CA向點A運動且速度是點P運動速度的2倍。

1.(1)求此拋物線的解析式和直線的解析式;                 

2.(2)如果點P和點Q同時出發(fā),運動時間為t(秒),試問當t為何值時,△PQA是直角三角形;

3.(3)在直線CA上方的拋物線上是否存在一點D,使得△ACD的面積最大,若存在,求出點D坐標;若不存在,請說明理由。

 

查看答案和解析>>

同步練習冊答案