【題目】計算:(2x﹣1)2﹣2(x+3)(x﹣3).

【答案】解:(2x﹣1)2﹣2(x+3)(x﹣3) =4x2﹣4x+1﹣2x2+9
=2x2﹣4x+10.
【解析】先根據(jù)完全平方公式和平方差公式計算,再根據(jù)合并同類項(xiàng)法則合并即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解完全平方公式(首平方又末平方,二倍首末在中央.和的平方加再加,先減后加差平方),還要掌握平方差公式(兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差.積化和差變兩項(xiàng),完全平方不是它)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長江二橋位于長江大橋下游3公里處、橋梁長度2400米,一張平面地圖上橋梁長度是4.8厘米,這張平面地圖的比例尺為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC,∠BAC=90°,BC=10cm,直線CM⊥BC,動點(diǎn)D從點(diǎn)C開始沿射線CB方向以每秒3厘米的速度運(yùn)動,動點(diǎn)E也同時從點(diǎn)C開始在直線CM上以每秒2厘米的速度運(yùn)動,連接AD、AE,設(shè)運(yùn)動時間為t秒.

(1)求AB的長;(2)當(dāng)t為多少時,△ABD的面積為15cm2?

(3)當(dāng)t為多少時,△ABD≌△ACE,并簡要說明理由.(請?jiān)趥溆脠D中畫出具體圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c是三角形ABC的三邊,且b2+2ab=c2+2ac,則三角形ABC的形狀是三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016寧夏第14題)如圖,RtAOB中,AOB=90°,OA在x軸上,OB在y軸上,點(diǎn)A,B的坐標(biāo)分別為(,0),(0,1),把RtAOB沿著AB對折得到RtAOB,則點(diǎn)O的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖南省岳陽市第24題)如圖,直線y=x+4交于x軸于點(diǎn)A,交y軸于點(diǎn)C,過A、C兩點(diǎn)的拋物線F1交x軸于另一點(diǎn)B(1,0).

(1)求拋物線F1所表示的二次函數(shù)的表達(dá)式;

(2)若點(diǎn)M是拋物線F1位于第二象限圖象上的一點(diǎn),設(shè)四邊形MAOC和BOC的面積分別為S四邊形MAOC和SBOC,記S=S四邊形MAOCSBOC,求S最大時點(diǎn)M的坐標(biāo)及S的最大值;

(3)如圖,將拋物線F1沿y軸翻折并復(fù)制得到拋物線F2,點(diǎn)A、B與(2)中所求的點(diǎn)M的對應(yīng)點(diǎn)分別為A、B、M,過點(diǎn)M作MEx軸于點(diǎn)E,交直線AC于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A、D、P為頂點(diǎn)的三角形與ABC相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上的一點(diǎn),OC⊥OD,垂足為O.

(1)若∠BOD=32°,求∠AOC的度數(shù);

(2)若∠AOC:∠BOD=2:1,直接寫出∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC的平分線交CD于點(diǎn)E.

(1)若∠A=70°,求∠ABE的度數(shù);

(2)若AB∥CD,且∠1=∠2,判斷DF和BE是否平行,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016廣東省深圳市第23題)如圖,拋物線軸交于A、B兩點(diǎn),且B(1 , 0)。

(1)、求拋物線的解析式和點(diǎn)A的坐標(biāo);

(2)、如圖1,點(diǎn)P是直線上的動點(diǎn),當(dāng)直線平分APB時,求點(diǎn)P的坐標(biāo);

(3)如圖2,已知直線 分別與 交于C、F兩點(diǎn)。點(diǎn)Q是直線CF下方的拋物線上的一個動點(diǎn),過點(diǎn)Q作 軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長線上,連接QE。問以QD為腰的等腰QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案