【題目】在正方形ABCD中,

(1)如圖1,若點(diǎn)E,F(xiàn)分別在邊BC,CD上,AE,BF交于點(diǎn)O,且∠AOF=90°.求證:AE =BF.

(2)如圖2,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的點(diǎn)M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點(diǎn)G.若DC=5,CM=2,求EF的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2) .

【解析】(1) 分析:(1)根據(jù)矩形的對(duì)邊平行且相等得到AB=BC,∠DCB=∠ABE.再結(jié)合一對(duì)直角相等即可證明三角形全等;(2) 由折疊的性質(zhì)得全等三角形的對(duì)應(yīng)邊相等以及勾股定理,可以求得DF,EF的長(zhǎng);再根據(jù)勾股定理求得DE的長(zhǎng),運(yùn)用三角函數(shù)定義求解.

本題解析:

(1)證明:∵四邊形ABCD是正方形,∴AB=BC,

∠ABE=∠BCF=90°,∵∠AOF=90°,∠AOB=90°,

∴∠BAE+∠OBA=90°,又∵∠FBC+∠OBA=90°,

∴∠BAE=∠CBF(同角的余角相等),在△ABE和△BCF中

∴△ABE≌△BCF(ASA).∴AE=BF.

(2) 作MG⊥AB于G,作FH⊥AD于H,如圖所示:

則MG=AD,F(xiàn)H=AB,∴MG=FH,

在△AMG和△EFH中, ,

∴△AMG≌△EFH(AAS),∴AM=EF;∵DC=AD=5,CM=2,∴DM=5-2=3

在Rt△ADM中,根據(jù)勾股定理得:AM=,

∴EF=AM=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩工程隊(duì)同時(shí)修筑水渠,且兩隊(duì)所修水渠總長(zhǎng)度相等.如圖是兩隊(duì)所修水渠長(zhǎng)度y(米)與修筑時(shí)間x(時(shí))的函數(shù)圖象的一部分.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)①直接寫出甲隊(duì)在0≤x≤5的時(shí)間段內(nèi),y與x之間的函數(shù)關(guān)系式;
②直接寫出乙隊(duì)在2≤x≤5的時(shí)間段內(nèi),y與x之間的函數(shù)關(guān)系式;
(2)求開(kāi)修幾小時(shí)后,乙隊(duì)修筑的水渠長(zhǎng)度開(kāi)始超過(guò)甲隊(duì)?
(3)如果甲隊(duì)施工速度不變,乙隊(duì)在修筑5小時(shí)后,施工速度因故減少到5米/時(shí),結(jié)果兩隊(duì)同時(shí)完成任務(wù),求乙隊(duì)從開(kāi)修到完工所修水渠的長(zhǎng)度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛汽車在筆直的公路上行駛,兩次拐彎后,仍在原來(lái)的方向上平行前進(jìn),那么這兩次拐彎的角度是( )

A. 第一次向右拐40, 第二次向左拐140

B. 第一次向左拐40, 第二次向右拐40

C. 第一次向左拐40, 第二次向左拐140

D. 第一次向右拐40, 第二次向右拐40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為,且

________,________;并將這兩個(gè)數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn),表示出來(lái);

數(shù)軸上在點(diǎn)右邊有一點(diǎn)、兩點(diǎn)的距離和為,若點(diǎn)的數(shù)軸上所對(duì)應(yīng)的數(shù)為,求的值;

若點(diǎn),點(diǎn)同時(shí)沿?cái)?shù)軸向正方向運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)的速度為單位/秒,點(diǎn)運(yùn)動(dòng)的速度為單位/秒,若,求運(yùn)動(dòng)時(shí)間的值.

(溫馨提示:、之間距離記作,點(diǎn)、在數(shù)軸上對(duì)應(yīng)的數(shù)分別為,則.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,O為對(duì)角線BD的中點(diǎn),過(guò)點(diǎn)O的直線EF分別交AD,BCE,F兩點(diǎn),連結(jié)BE,DF

(1)求證:DOE≌△BOF

(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的箱子里放有4個(gè)乒乓球,每個(gè)乒乓球上分別寫有數(shù)字1、2、3、4,從箱中摸出一個(gè)球記下數(shù)字后放回箱中,搖勻后再摸出一個(gè)記下數(shù)字.若將第一次摸出的球上的數(shù)字記為點(diǎn)的橫坐標(biāo),第二次摸出球上的數(shù)字記為點(diǎn)的縱坐標(biāo).

(1)請(qǐng)用列表法或樹狀圖法寫出兩次摸球后所有可能的結(jié)果.
(2)求這樣的點(diǎn)落在如圖所示的圓內(nèi)的概率(注:圖中圓心在直角坐標(biāo)系中的第一象限內(nèi),并且分別于x軸、y軸切于點(diǎn)(2,0)和(0,2)兩點(diǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輪船在P處測(cè)得燈塔A在正北方向,燈塔B在南偏東24.5°方向,輪船向正東航行了2400m,到達(dá)Q處,測(cè)得A位于北偏西49°方向,B位于南偏西41°方向.

(1)線段BQ與PQ是否相等?請(qǐng)說(shuō)明理由;
(2)求A、B間的距離(參考數(shù)據(jù)cos41°=0.75).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同學(xué)們都知道,表示5與-2之差的絕對(duì)值,實(shí)際上也可理解為5與-2兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離,試探索:

(1)=________.

(2)=5,則x=____.

(3)同理表示數(shù)軸上有理數(shù)x所對(duì)應(yīng)的點(diǎn)到-12所對(duì)應(yīng)的兩點(diǎn)距離之和,請(qǐng)你找出所有符合條件的整數(shù)x,使得=3,這樣的整數(shù)是________(直接寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知數(shù)軸上A,B兩點(diǎn)對(duì)應(yīng)的數(shù)分別為-2,4,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x.

(1)若點(diǎn)P到點(diǎn)AB的距離相等,求點(diǎn)P對(duì)應(yīng)的數(shù)x的值.

(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A,B的距離之和為8?若存在,請(qǐng)求出x的值;若不存在,說(shuō)明理由.

(3)點(diǎn)AB分別以2個(gè)單位長(zhǎng)度/分、1個(gè)單位長(zhǎng)度/分的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)P5個(gè)單位長(zhǎng)度/分的速度從O點(diǎn)向左運(yùn)動(dòng).當(dāng)遇到A時(shí),點(diǎn)P立即以同樣的速度向右運(yùn)動(dòng),并不停地往返于點(diǎn)A與點(diǎn)B之間.當(dāng)點(diǎn)A與點(diǎn)B重合時(shí),點(diǎn)P經(jīng)過(guò)的總路程是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案