如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B?A,B?C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當(dāng)點N到達終點C時,點M也隨之停止運動.設(shè)運動時間為t秒.

(1)若a=4厘米,t=1秒,則PM= _________ 厘米;
(2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
(4)是否存在這樣的矩形:在運動過程中,存在某時刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.
(1)PM=;(2)當(dāng)t=2時,使△PNB∽△PAD,相似比為2:3;(3)3<a≤6;(4)∵3<a≤6時,當(dāng)a=2時梯形PMBN與梯形PQDA的面積、梯形PQCN的面積相等.

試題分析:(1)要想求出PM的長度,可以利用△ANB∽△APM得到比例,當(dāng)t=1時,MB=1,NB=1,AM=3,∴PM=;(2)當(dāng)△PNB∽△PAD時,可以得到比例,∵△ANB∽△APM,∴,∴,可以求出t;(3)要判斷兩個梯形的面積是否相等,只需要把各自的面積表示出來,得到方程,方程有解,則存在,由題,△AMP∽△ABN,∴,即,∴PM=,∵PQ=3﹣,當(dāng)梯形PMBN與梯形PQDA的面積相等,即,化簡得t=,∵t≤3,∴3<a≤6;(4)由(2)知道,當(dāng)3<a≤6時,梯形PMBN與梯形PQDA的面積相等,∴梯形PQCN的面積與梯形PMBN的面積相等即可,將兩個梯形的面積表示出來,得到方程,方程有解,則a存在,則CN=PM,∴=3﹣t,得t2﹣2at+3a=0,把t=代入,得9a3﹣108a=0,∵a≠0,∴9a2﹣108=0,∴a=±2,∴a=2,當(dāng)a=2時梯形PMBN與梯形PQDA的面積、梯形PQCN的面積相等.
試題解析:(1)當(dāng)t=1時,MB=1,NB=1,AM=4﹣1=3,
∵PM∥BN,
∴△ANB∽△APM,
,
∴PM=;
(2)由題,∵△PNB∽△PAD,
,
∵△ANB∽△APM,

,
∴t=2,相似比為2:3;
(3)∵PM⊥AB,CB⊥AB,∠AMP=∠ABC,
∴△AMP∽△ABN,
,即
∴PM=,
∵PQ=3﹣,
當(dāng)梯形PMBN與梯形PQDA的面積相等,即==,
化簡得t=,
∵t≤3,
≤3,
則a≤6,
∴3<a≤6;
(4)由(2)知道,當(dāng)3<a≤6時,梯形PMBN與梯形PQDA的面積相等,
∴梯形PQCN的面積與梯形PMBN的面積相等即可,則CN=PM,
=3﹣t,
兩邊同時乘以a,得at﹣t2=3a﹣at,
整理,得t2﹣2at+3a=0,
把t=代入,整理得9a3﹣108a=0,
∵a≠0,
∴9a2﹣108=0,
∴a=±2
∴a=2,
∴存在a,當(dāng)a=2時梯形PMBN與梯形PQDA的面積、梯形PQCN的面積相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABD和△CBD關(guān)于直線BD對稱(點A的對稱點是點C),點E、F分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,聯(lián)結(jié)AF、AE,交BD于點G.
(1)如圖(1),求證:∠EAF=∠ABD;

圖(1)
(2)如圖(2),當(dāng)AB=AD時,M是線段AG上一點,聯(lián)結(jié)BM、ED、MF,MF的延長線交ED于點N,∠MBF=∠BAF,AF=AD,試探究線段FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

圖(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求證:△ABD∽△CBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明準(zhǔn)備制作正方體紙盒,現(xiàn)選用一種直角三角形紙片進行如下設(shè)計,直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊恰好經(jīng)過兩個正方形的頂點(如圖),已知BC=16㎝,則這個展開圖圍成的正方體的棱長為             ㎝.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如左圖,小正方形的邊長均為1,則下列圖中的三角形(陰影部分)與相似的是(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果兩個相似三角形的相似比是2:3,那么它們的周長比是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,AB=6,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且AB=3CF,DG⊥AE,垂足為G,若DG=2,則AE的邊長為(  )
A.4B.6C.6D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△中,點、分別為邊上的點,且,若, , ,則的長為(    )
A.3B.6C.9D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,D是△ABC的邊BC上一點,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面積為a,則△ACD的面積為(  )
A.a(chǎn)B.C.D.

查看答案和解析>>

同步練習(xí)冊答案