7.解下列方程:2x2-x=2.

分析 先把方程化為一般式,再計(jì)算判別式的值,然后利用求根公式求解.

解答 解:2x2-x-2=0,
△=(-1)2-4×2×(-2)=17,
x=$\frac{1±\sqrt{17}}{2×2}$,
所以x1=$\frac{1+\sqrt{17}}{4}$,x2=$\frac{1-\sqrt{17}}{4}$.

點(diǎn)評(píng) 本題考查了解一元二次方程-公式法:用求根公式解一元二次方程的方法是公式法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.當(dāng)a<0,b<0時(shí),把$\sqrt{\frac{a}}$化為最簡(jiǎn)二次根式,得( 。
A.$\frac{1}$$\sqrt{ab}$B.-$\frac{1}$$\sqrt{ab}$C.-$\frac{1}$$\sqrt{-ab}$D.b$\sqrt{ab}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,在等腰△ABC中,AB=AC,AF為BC的中線,D為AF上的一點(diǎn),且BD的垂直平分線過(guò)點(diǎn)C并交BD于E.
求證:△BCD是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)是y關(guān)于x的二次函數(shù)的是( 。
A.y=$\frac{2}{x}$B.y=-3x+2C.y=-3x2+2D.y=3x-22

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.先化簡(jiǎn),再求值:
(1)x(x2-4)-(x+3)(x2-3x+2),其中x=$\frac{2}{3}$.
(2)$\frac{1}{6}$mn2•(6mn3)•$\frac{1}{12}{m}^{5}$,其中m=4,n=-$\frac{1}{8}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖已知二次函數(shù)y=ax2圖象的頂點(diǎn)為原點(diǎn),直線y=$\frac{1}{2}$x+4的圖象與該二次函數(shù)的圖象交于A點(diǎn)(8,8),直線與x軸的交點(diǎn)為C,與y軸的交點(diǎn)為B.

(1)求這個(gè)二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
(2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A,B不重合),過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于D點(diǎn),與x軸交于點(diǎn)E.設(shè)線段PD的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍(圖1);
(3)在(2)的條件下,連接BD,當(dāng)動(dòng)點(diǎn)P在線段AB上移動(dòng)時(shí),點(diǎn)D也在拋物線上移動(dòng),線段BD也繞點(diǎn)B轉(zhuǎn)動(dòng),當(dāng)BD∥x軸時(shí)(圖2),請(qǐng)求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

19.比較大。$\frac{1}{2}$<$\frac{{\sqrt{5}-1}}{2}$,$\sqrt{24}$>4.8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.現(xiàn)用棱長(zhǎng)為2cm的小立方體按如圖所示規(guī)律搭建幾何體,圖中自上面下分別叫第一層、第二層、第三層…,其中第一層擺放1個(gè)小立方體,第二層擺放3個(gè)小立方體,第三層擺放6個(gè)小立方體…,那么搭建第1個(gè)小立方體,搭建第2個(gè)幾何體需要4個(gè)小立方體,搭建第3個(gè)幾何體需要10個(gè)小立方體…,按此規(guī)律繼續(xù)擺放.
(1)搭建第4個(gè)幾何體需要小立方體的個(gè)數(shù)為20;
(2)為了美觀,需將幾何體的所有露出部分(不包含底面)都噴涂油漆,且噴涂1cm2需用油漆0.2克.
①求噴涂第4個(gè)幾何體需要油漆多少克?
②如果要求從第1個(gè)幾何體開(kāi)始,依此對(duì)第1個(gè)幾何體,第2個(gè)幾何體,第3和幾何體,…,第n個(gè)幾何體(其中n為正整數(shù))進(jìn)行噴涂油漆,那么當(dāng)噴涂完第21個(gè)幾何體時(shí),共用掉油漆多少克?
【參考公式:①1×2+2×3+3×4+…+n(n+1)=$\frac{n(n+1)(n+2)}{3}$;
②12+22+32+…+n2=$\frac{n(n+1)(2n+1)}{6}$,其中n為正整數(shù)】

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.用科學(xué)記數(shù)法表示0.000000125,結(jié)果為1.25×10-7

查看答案和解析>>

同步練習(xí)冊(cè)答案