【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標(biāo)系中,點(diǎn)B,F的坐標(biāo)分別為(4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點(diǎn)P(點(diǎn)PGC)是位似中心,則點(diǎn)P的坐標(biāo)為(  )

A. (0,3)

B. (0,2.5)

C. (0,2)

D. (0,1.5)

【答案】C

【解析】

如圖連接BFy軸于P ,BCGF可得,再根據(jù)線段的長(zhǎng)即可求出GP,PC,即可得出P點(diǎn)坐標(biāo).

連接BFy軸于P

四邊形ABCD和四邊形EFGO是矩形,點(diǎn)B,F的坐標(biāo)分別為(4,4)(2,1),

點(diǎn)C的坐標(biāo)為(0,4),點(diǎn)G的坐標(biāo)為(0,1),

CG3,

BCGF,

,

GP1,PC2,

點(diǎn)P的坐標(biāo)為(0,2),

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角ABC中,BAC=90°,D在BC上,連接AD,作BFAD分別交AD于E,AC于F.

(1)如圖1,若BD=BA,求證:ABE≌△DBE;

(2)如圖2,若BD=4DC,取AB的中點(diǎn)G,連接CG交AD于M,求證:GM=2MC;AG2=AFAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC是一張等腰直角三角形紙板,∠C=Rt∠AC=BC=2,

1)要在這張紙板中剪出一個(gè)盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請(qǐng)說(shuō)明理由.

2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE△BDF中,分別剪取正方形,得到兩個(gè)相同的正方形,稱為第2次剪取,并記這兩個(gè)正方形面積和為s2(如圖2),則s2=;再在余下的四個(gè)三角形中,用同樣方法分別剪取正方形,得到四個(gè)相同的正方形,稱為第3次剪取,并記這四個(gè)正方形面積和為s3,繼續(xù)操作下去,則第10次剪取時(shí),s10=;

3)求第10次剪取后,余下的所有小三角形的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,給定銳角三角形ABC,小明希望畫正方形DEFG,使DE位于邊BC上,FG分別位于邊AC,AB上,他發(fā)現(xiàn)直接畫圖比較困難,于是他先畫了一個(gè)正方形HIJK,使得點(diǎn)H,I位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時(shí)他發(fā)現(xiàn)可以將正方形HIJK通過(guò)放大或縮小得到滿足要求的正方形DEFG.

閱讀以上材料,回答小明接下來(lái)研究的以下問(wèn)題:

(1)如圖2,給定銳角三角形ABC,畫出所有長(zhǎng)寬比為21的長(zhǎng)方形DEFG,使DE位于邊BC上,F,G分別位于邊AC,AB上.

(2)已知三角形ABC的面積為36,BC12,在第(1)問(wèn)的條件下,求長(zhǎng)方形DEFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m。設(shè)AD的長(zhǎng)為xm,DC的長(zhǎng)為ym。

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過(guò)26m,材料AD和DC的長(zhǎng)都是米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在△ABC中,AB4BC5,CA6.

(1)如果DE10,那么當(dāng)EF________,FD________時(shí),△DEF∽△ABC;

(2)如果DE10,那么當(dāng)EF________,FD________時(shí),△FDE∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(21),B(14),C(3,2)

(1)畫出△ABC關(guān)于點(diǎn)B成中心對(duì)稱的圖形△A1BC1

(2)以原點(diǎn)O為位似中心,相似比為12,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD中,BC=3,點(diǎn)E、F分別是CB、CD延長(zhǎng)線上的點(diǎn),DF=BE,連接AE、AF,過(guò)點(diǎn)A作AHED于H點(diǎn).

(1)求證:ADF≌△ABE;

(2)若BE=1,求tanAED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+ x+cx軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB,點(diǎn)C(6,)在拋物線上,直線ACy軸交于點(diǎn)D.

(1)求c的值及直線AC的函數(shù)表達(dá)式;

(2)點(diǎn)Px軸正半軸上,點(diǎn)Qy軸正半軸上,連結(jié)PQ與直線AC交于點(diǎn)M,連結(jié)MO并延長(zhǎng)交AB于點(diǎn)N,若MPQ的中點(diǎn).

①求證:△APM∽△AON;

②設(shè)點(diǎn)M的橫坐標(biāo)為m,求AN的長(zhǎng)(用含m的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案