【題目】試根據圖中信息,解答下列問題.

(1)一次性購買6根跳繩需_____元,一次性購買12根跳繩需______元;

(2)小紅比小明多買2根,付款時小紅反而比小明少5元,你認為有這種可能嗎?若有,請求出小紅購買跳繩的根數(shù);若沒有,請說明理由.

【答案】(1)150240;(211.

【解析】

1)根據單價×數(shù)量=總價,求出6根跳繩需多少元;購買12根跳繩,超過10根,打八折是指現(xiàn)價是原價的80%,用單價×數(shù)量×0.8即可求出購買12根跳繩需多少元;
2)有這種可能,可以設小紅購買x跳繩根,那么小明購買x-2根跳繩,列出方程25x×0.8=25x-2-5,解答即可.

解:(1)一次性購買6根跳繩需25×6=150(元);
一次性購買12根跳繩需25×12×0.8=240(元);
故答案為:150;240

2)設小紅購買x跳繩根,那么小明購買(x-2)根跳繩,
25x×0.8=25x-2-5,
解得:x=11

小明購買了:11-2=9.
答:小紅購買11根跳繩.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把RtABC繞頂點C順時針旋轉90°得到RtDFC,若直線DF垂直平分AB,垂足為點E,連接BF,CE,且BC=2,下面四個結論:①BF=;②∠CBF=45°;③△BEC的面積=FBC的面積;④△ECD的面積為,其中正確的結論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點AO、B對應的數(shù)分別為﹣3,01,點P為數(shù)軸上任意一點,其表示的數(shù)為x

1)如果點P到點A,點B的距離相等,那么x   ;

2)當x   時,點P到點A、點B的距離之和是6;

3)若點P到點A,點B的距離之和最小,則x的取值范圍是   ;

4)若點P到點A,點B,點O的距離之和最小,則最小距離為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).

(1)求k、m的值;

(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.

①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;

②若PN≥PM,結合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】家庭過期藥品屬于“國家危險廢物”,處理不當將污染環(huán)境,危害健康.某市藥監(jiān)部門為了解市民家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機抽樣調査.

(1)下列選取樣本的方法最合理的一種是 .(只需填上正確答案的序號)

在市中心某個居民區(qū)以家庭為單位隨機抽;在全市醫(yī)務工作者中以家庭為單位隨機抽取;在全市常住人口中以家庭為單位隨機抽。

(2)本次抽樣調査發(fā)現(xiàn),接受調査的家庭都有過期藥品,現(xiàn)將有關數(shù)據呈現(xiàn)如圖:

m= ,n= ;

補全條形統(tǒng)計圖;

根據調査數(shù)據,你認為該市市民家庭處理過期藥品最常見的方式是什么?

家庭過期藥品的正確處理方式是送回收點,若該市有180萬戶家庭,請估計大約有多少戶家庭處理過期藥品的方式是送回收點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,

請回答下列問題:

1)這次被調查的學生共有多少人?

2)請你將條形統(tǒng)計圖(2)補充完整;

3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某興趣小組用高為1.6米的儀器測量塔CD的高度.由距塔CD一定距離的A處用儀器觀察建筑物頂部D的仰角為β,在AC之間選一點B,由B處用儀器觀察建筑物頂部D的仰角為α.測得A,B之間的距離為10米,tanα=1.6,tanβ=1.2,試求塔CD的大約高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)

(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列圖案均是長度相同的火柴按一定的規(guī)律拼搭而成:第1個圖案需7根火柴,第2個圖案需13根火柴,,依此規(guī)律,第11個圖案需( )根火柴.

A. 156 B. 157 C. 158 D. 159

查看答案和解析>>

同步練習冊答案