【題目】中國古代有若輝煌的數(shù)學成就,《周髀算經(jīng)》,《九章算術》,《海島算經(jīng)》(分別用字母AB、C依次表示這三部專著)等是我國古代數(shù)學的重要文獻.將AB、C這三個字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗均后放在桌面上小明先從中隨機抽取張卡片,記錄下卡片上的字母,放回后洗均,再由小強從中隨機抽取張卡片,請用列表法或畫樹狀圖法,求小明和小強抽到的卡片上的字母相同的概率.

【答案】

【解析】

根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和小明和小強抽到的卡片上的字母相同的情況數(shù),然后根據(jù)概率公式即可得出答案.

解:根據(jù)題意畫圖如下:

共有9種等可能性結果,其中小明和小強抽到的卡片上的字母相同的有3種,

所以小明和小強抽到的卡片上的字母相同的概率是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】今年疫情防控期間.某小區(qū)衛(wèi)生所決定購買A,B兩種口罩.以滿足小區(qū)居民的需要.若購買A種口罩9包,B種口罩4包,則需要700元;若購買A種口罩3包.B種口罩5包.則需要380元.

1)購買人A,B兩種口罩每包各需名少元?

2)衛(wèi)生所準備購進這兩種口罩共90包,并且A種口罩包數(shù)不少于B種口罩包數(shù)的2倍,請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于A,B兩點,與y軸交于點C,且關于直線對稱,點A的坐標為(-1,0)

(1)求二次函數(shù)的表達式;

(2)連接BC,若點Py軸上時,BPBC的夾角為15°,求線段CP的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1A是⊙O上一動點,P是⊙O外一點,在圖中作出PA最小時的點A

2)如圖2,RtABC中,∠C90°AC8BC6,以點C為圓心的⊙C的半徑是3.6Q是⊙C上一動點,在線段AB上確定點P的位置,使PQ的長最小,并求出其最小值.

3)如圖3,矩形ABCD中,AB6BC9,以D為圓心,3為半徑作⊙D,E為⊙D上一動點,連接AE,以AE為直角邊作RtAEF,∠EAF90°,tanAEF,試探究四邊形ADCF的面積是否有最大或最小值,如果有,請求出最大或最小值,否則,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是超市的手推車,如圖2是其側面示意圖,已知前后車輪半徑均為5 cm,兩個車輪的圓心的連線AB與地面平行,測得支架ACBC60cm,AC、CD所在直線與地面的夾角分別為30°、60°CD50cm

1)求扶手前端D到地面的距離;

2)手推車內裝有簡易寶寶椅,EF為小坐板,打開后,椅子的支點H到點C的距離為10 cmDF20cmEFAB,∠EHD45°,求坐板EF的寬度.(本題答案均保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線yx2+bx+cx軸相交于AB兩點,與y軸相交于點C,若A(﹣10),且OC3OA

1)填空:b   c   ;

2)在圖1中,若點M為拋物線上第四象限內一動點,順次連接AC,CM,MB,求四邊形ACMB面積的最大值;

3)在圖2中,將直線BC沿x軸翻折交y軸于點N,過點B的直線與拋物線相交于點D.若∠NBD=∠OCA,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某愛心組織籌集了部分資金,計劃購買甲、乙兩種救災物品共2000件送往災區(qū),已知每件甲物品的價格比每件乙物品額價格貴10元,用350元購買甲種物品的件數(shù)恰好與用300元購買乙種物品的件數(shù)相同.

1)求甲、乙兩種救災物品每件的價格是多少元?

2)經(jīng)調查,災區(qū)對乙種物品件數(shù)的需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購買這2000件物品,需籌集資金多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.請根據(jù)你對這句話的理解,解決下面問題:若m、nmn)是關于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則a、b、mn的大小關系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,為坐標原點,拋物線的頂點為,與軸的交點為

1)求點,的坐標;

2)已知點(4,2),將拋物線向上平移得拋物線,點平移后的對應點為,且,求拋物線的解析式;

3)將拋物線沿軸翻折,得拋物線,拋物線軸交于點,(點在點的左側),與軸交于點,平行于軸的直線與拋物線交于點(,),(,),與直線交于點(,),若,結合函數(shù)的圖象,求的取值范圍.

查看答案和解析>>

同步練習冊答案