平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與軸交于兩點(點在點的左邊),與軸交于點,其頂點的橫坐標(biāo)為1,且過點

(1)求此二次函數(shù)的表達式;

(2)若直線與線段交于點(不與點重合),則是否存在這樣的直線,使得以為頂點的三角形與相似?若存在,求出該直線的函數(shù)表達式及點的坐標(biāo);若不存在,請說明理由;

(3)若點是位于該二次函數(shù)對稱軸右邊圖象上不與頂點重合的任意一點,試比較銳角的大。ú槐刈C明),并寫出此時點的橫坐標(biāo)的取值范圍.

答案:

分析:(1)已知了拋物線的頂點橫坐標(biāo)為1,即x=-
b
2a
=1,將已知的兩點坐標(biāo)代入拋物線中,聯(lián)立三式即可求出拋物線的解析式.
(2)本題要分兩種情況討論:△BOD∽△BAC或△BDO∽△BAC,解題思路都是通過相似三角形得出的關(guān)于BD、BC、BO、BA的比例關(guān)系式求出BD的長,然后根據(jù)∠OBC=45°的特殊條件用BD的長求出D點的坐標(biāo).
(3)本題求解的關(guān)鍵是找出幾個特殊位置.
①由于∠PCO是銳角,因此要先找出∠PCO是直角時的值,以此來確定P的大致取值范圍.去C關(guān)于拋物線對稱軸的對稱點C′(2,3),那么當(dāng)P、C′重合時,∠PCO=90°,因此∠PCO若為銳角,則P點的橫坐標(biāo)必大于2.
②當(dāng)∠PCO=∠ACO時,根據(jù)A點的坐標(biāo)和拋物線對稱軸的解析式可知:∠ACO=∠ECO,因此直線CE與拋物線的交點(除C外)就是此時P點的位置.據(jù)此可求出此時P點的橫坐標(biāo).
根據(jù)上面兩種情況進行判定即可.
解答:精英家教網(wǎng)解:(1)∵二次函數(shù)圖象頂點的橫坐標(biāo)為1,且過點(2,3)和(-3,-12),
∴由
-
b
2a
=1
4a+2b+c=3
9a-3b+c=-12

解得
a=-1
b=2
c=3

∴此二次函數(shù)的表達式為y=-x2+2x+3.

(2)假設(shè)存在直線l:y=kx(k≠0)與線段BC交于點D(不與點B,C重合),使得以B,O,D為頂點的三角形與△BAC相似.
在y=-x2+2x+3中,令y=0,則由-x2+2x+3=0,
解得x1=-1,x2=3.
∴A(-1,0),B(3,0).
令x=0,得y=3.
∴C(0,3).
設(shè)過點O的直線l交BC于點D,過點D作DE⊥x軸于點E.
∵點B的坐標(biāo)為(3,0),點C的坐標(biāo)為(0,3),點A的坐標(biāo)為(-1,0).
∴|AB|=4,|OB|=|OC|=3,∠OBC=45°.
∴|BC|=
32+32
=3
2

要使△BOD∽△BAC或△BDO∽△BAC,
已有∠B=∠B,則只需
|BD|
|BC|
=
|BO|
|BA|
,①或
|BO|
|BC|
=
|BD|
|BA|
②成立.
若是①,則有|BD|=
|BO|?|BC|
|BA|
=
3×3
2
4
=
9
2
4

而∠OBC=45°,
∴|BE|=|DE|.
∴在Rt△BDE中,由勾股定理,
得|BE|2+|DE|2=2|BE|2=|BD|2=(
9
2
4
2
解得|BE|=|DE|=
9
4
(負(fù)值舍去).
∴|OE|=|OB|-|BE|=3-
9
4
=
3
4

∴點D的坐標(biāo)為(
3
4
,
9
4
).
將點D的坐標(biāo)代入y=kx(k≠0)中,求得k=3.
∴滿足條件的直線l的函數(shù)表達式為y=3x.
或求出直線AC的函數(shù)表達式為y=3x+3,則與直線AC平行的直線l的函數(shù)表達式為y=3x.
此時易知△BOD∽△BAC,再求出直線BC的函數(shù)表達式為y=-x+3.聯(lián)立y=3x,y=-x+3求得點D的坐標(biāo)為(
3
4
9
4
).
若是②,則有|BD|=
|BO|?|BA|
|BC|
=
3×4
3
2
=2
2

而∠OBC=45°,
∴|BE|=|DE|.
∴在Rt△BDE中,由勾股定理,
得|BE|2+|DE|2=2|BE|2=|BD|2=(2
2
2
解得|BE|=|DE|=2(負(fù)值舍去).
∴|OE|=|OB|-|BE|=3-2=1.
∴點D的坐標(biāo)為(1,2).
將點D的坐標(biāo)代入y=kx(k≠0)中,求得k=2.
∴滿足條件的直線l的函數(shù)表達式為y=2x.
∴存在直線l:y=3x或y=2x與線段BC交于點D(不與點B,C重合),
使得以B,O,D為頂點的三角形與△BAC相似,且點D的坐標(biāo)分別為(
3
4
,
9
4
)或(1,2).

(3)設(shè)過點C(0,3),E(1,0)的直線y=kx+3(k≠0)與該二次函數(shù)的圖象交于點P.
將點E(1,0)的坐標(biāo)代入y=kx+3中,
求得k=-3.
∴此直線的函數(shù)表達式為y=-3x+3.
設(shè)點P的坐標(biāo)為(x,-3x+3),
并代入y=-x2+2x+3,得x2-5x=0.
解得x1=5,x2=0(不合題意,舍去).
∴x=5,y=-12.
∴點P的坐標(biāo)為(5,-12).
此時,銳角∠PCO=∠ACO.
又∵二次函數(shù)的對稱軸為x=1,
∴點C關(guān)于對稱軸對稱的點C'的坐標(biāo)為(2,3).
∴當(dāng)xp>5時,銳角∠PCO<∠ACO;
當(dāng)xp=5時,銳角∠PCO=∠ACO;
當(dāng)2<xp<5時,銳角∠PCO>∠ACO.
點評:本題是二次函數(shù)綜合體,考查了二次函數(shù)解析式的確定、相似三角形的判定、函數(shù)圖象交點等知識點.綜合性強.



練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,已知點A(0,2),點P是x軸上一動點,以線段AP為精英家教網(wǎng)一邊,在其一側(cè)作等邊三角形APQ.當(dāng)點P運動到原點O處時,記Q的位置為B.
(1)求點B的坐標(biāo);
(2)求證:當(dāng)點P在x軸上運動(P不與O重合)時,∠ABQ為定值;
(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、平面直角坐標(biāo)系中,已知B(-2,0)關(guān)于y軸的對稱點為B′,從A(2,4)點發(fā)出一束光線,經(jīng)過y軸反射后穿過B′點.此光線在y軸上的入射點的坐標(biāo)是
(0,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,在平面直角坐標(biāo)系中,已知點A坐標(biāo)為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在平面直角坐標(biāo)系中,已知平行四邊形的三個頂點坐標(biāo)分別是O(0,0),A(-3,0),B(0,2),求平行四邊形第四個頂點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,已知A(0,2),B(1,0)將△AOB繞點B順時針方向旋轉(zhuǎn)90°得到△DEB.以A為頂點的拋物線經(jīng)過點E.
(1)求拋物線的解析式;
(2)在Y軸右側(cè)拋物線上是否存在點P,使得以點P、O、E、D為頂點的四邊形是梯形?若存在,請寫出點P的坐標(biāo);若不存在,請說明理由;
(3)設(shè)△DEB的外心為M,將拋物線沿X軸正方向以每秒1個單位的速度向右平移,直接寫精英家教網(wǎng)出M在拋物線內(nèi)部(指拋物線與X軸所圍成的部分)時t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案