【題目】“重慶自然博物館”坐落在美麗的縉云山腳下,該館現有藏品11萬余件,是全國中小學生研學實踐教育基地,西大附中某數學興趣小組,想測量博物館的高度,他們先在博物館正對面的大樓樓頂A處,測得博物館底部B處的俯角為50°,測得博物館頂端C的俯角為45°,再從樓底O經過平地到達F,再沿著斜坡向上到達E,最后經過平臺達到B,測得OF=20米,平臺EB的長為28.8米,已知,樓OA高為60.5米,斜坡EF的坡度i=1:2.4,A、O、F、E、B、C在同一平面內,則博物館的高約為( )米.(參考數據:tan50°≈1.2)
A.10.5B.10.0C.12.0D.12.2
【答案】B
【解析】
延長CB交OF的延長線于G,作EH⊥OG于H,延長EB交OA于N,作CM⊥OA于M,設博物館的高BC為x米,AM=y米,根據坡度的概念用x、y表示出FH、EH,根據正切的定義列出方程,解方程得到答案.
解:延長CB交OF的延長線于G,作EH⊥OG于H,延長EB交OA于N,作CM⊥OA于M,
則四邊形MNBC為矩形,
∴MC=OG,MN=BC,
設博物館的高BC為x米,AM=y米,
則MN=x,
∵∠ACM=45°,
∴MC=AM=y,
∴ON=60.5﹣x﹣y,
則EH=ON=60.5﹣x﹣y,
∵斜坡EF的坡度i=1:2.4,
∴FH=2.4×(60.5﹣x﹣y),
∴OG=OF+FH+HG=20+2.4×(60.5﹣x﹣y)+28.8=y,
整理得,2.4x+3.4y=194,
在Rt△ABN中,tan∠ABN=,即
整理得,y=5x,
把y=5x代入2.4x+3.4y=194,得x=10,即BC=10米,
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點E,F為DC的中點,連結EF、BF,下列結論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結論的個數共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了迎接“五一”小長假的購物高峰.某服裝專賣店老板小王準備購進甲、乙兩種夏季服裝.其中甲種服裝每件的成本價比乙種服裝的成本價多20元,甲種服裝每件的售價為240元比乙種服裝的售價多80元.小王用4000元購進甲種服裝的數量與用3200元購進乙種服裝的數量相同.
(1)甲種服裝每件的成本是多少元?
(2)要使購進的甲、乙兩種服裝共200件的總利潤(利潤=售價-進價)不少于21100元,且不超過21700元,問小王有幾種進貨方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:實數x滿足2a﹣3≤x≤2a+2,y1=x+a,y2=﹣2x+a+3,對于每一個x,p都取y1,y2中的較大值.若p的最小值是a2﹣1,則a的值是( 。
A.0或﹣3B.2或﹣1C.1或2D.2或﹣3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y1=x2+bx+c與y2=x2+cx+b(b<c)的圖象相交于點A,分別與y軸相交于點C,B,連接AB、AC.
(1)過點(1,0)作直線l平行于y軸,判斷點A與直線l的位置關系,并說明理由.
(2)當A、C兩點是二次函數y1=x2+bx+c圖象上的對稱點時,求b的值.
(3)當△ABC是等邊三角形時,求點B的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某課外學習小組根據學習函數的經驗,對函數y=x3﹣3x的圖象與性質進行了探究.請補充完整以下探索過程:
(1)列表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … | ||||
y | … | ﹣2 | m | 2 | 0 | n | 2 | … |
請直接寫出m,n的值;
(2)根據上表中的數據,在平面直角坐標系內補全該函數的圖象;
(3)若函數y=x3﹣3x的圖象上有三個點A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2<x2<2<x3,則y1,y2,y3之間的大小關系為 (用“<”連接);
(4)若方程x3﹣3x=k有三個不同的實數根.請根據函數圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是的直徑,點在上,的平分線交于點,交于點.過點作的切線交的延長線于點,連接,.
(1)求證:,;
(2)過點分別作直線,垂線,垂足為,.若,,請你完成示意圖并求線段的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.
(1)求拋物線的表達式;
(2)當P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F為垂足,當點P運動到何處時,以P,C,F為頂點的三角形與△OBC相似?并求出此時點P的坐標;
(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標,若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠A=90°,以AB為直徑的⊙O交BC于點D,點E在⊙O上, CE=CA,
AB,CE的延長線交于點F.
(1)求證:CE與⊙O相切;
(2)若⊙O的半徑為3,EF=4,求BD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com