如圖,在A、B兩處之間要修一條筆直的公路,從A地測(cè)得公路走向是北偏東48°,A、B兩地同時(shí)開工,若干天后公路準(zhǔn)確接通。

(1)B地修公路的走向是南偏西多少度?
(2)若公路AB長(zhǎng)8千米,另一條公路BC長(zhǎng)6千米,且BC的走向是北偏西42°,試求A到B公路的距離?
48°,AB=8千米解析:
(1)由兩地南北方向平行,根據(jù)內(nèi)錯(cuò)角相等,可知B地所修公路的走向是南偏西48°.
(2)∵∠ABC=180°-∠ABG-∠EBC=180°-48°-42°=90°,
∴AB⊥BC,
∴A地到公路BC的距離是AB=8千米
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取BD=,則AD的長(zhǎng)就是所求方程的解。

(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長(zhǎng)。

(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取,則AD的長(zhǎng)就是所求方程的解。

(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長(zhǎng)。

(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取BD=,則AD的長(zhǎng)就是所求方程的解。

(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長(zhǎng)。

(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鎮(zhèn)江市實(shí)驗(yàn)初中九年級(jí)(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解.在歐幾里得的《幾何原本》中,形如x2+ax=b2(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊作Rt△ABC,再在斜邊上截取BD=,則AD的長(zhǎng)就是所求方程的解.
(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長(zhǎng).
(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(17)(解析版) 題型:解答題

(2013•溧水縣二模)古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解.在歐幾里得的《幾何原本》中,形如x2+ax=b2(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊作Rt△ABC,再在斜邊上截取BD=,則AD的長(zhǎng)就是所求方程的解.
(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長(zhǎng).
(2)請(qǐng)利用你已學(xué)的知識(shí)說明該圖解法的正確性,并說說這種解法的遺憾之處.

查看答案和解析>>

同步練習(xí)冊(cè)答案