在平面直角坐標(biāo)系xOy中,矩形ABCO的頂點(diǎn)A、C分別在y軸、x軸正半軸上,點(diǎn)P在AB上,PA=1,AO=2.經(jīng)過(guò)原點(diǎn)的拋物線y=mx2-x+n的對(duì)稱軸是直線x=2.
(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長(zhǎng)的三角板的直角頂點(diǎn)放在P點(diǎn)處,兩直角邊恰好分別經(jīng)過(guò)點(diǎn)O和C.現(xiàn)在利用圖2進(jìn)行如下探究:
①將三角板從圖1中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),兩直角邊分別交OA、OC于點(diǎn)E、F,當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止旋轉(zhuǎn).請(qǐng)你觀察、猜想,在這個(gè)過(guò)程中,的值是否發(fā)生變化?若發(fā)生變化,說(shuō)明理由;若不發(fā)生變化,求出的值.
②設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為D,頂點(diǎn)為M,在①的旋轉(zhuǎn)過(guò)程中,是否存在點(diǎn)F,使△DMF為等腰三角形?若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)①過(guò)原點(diǎn),②對(duì)稱軸為直線x=2這兩個(gè)條件確定拋物線的解析式;
(2)①如答圖1所述,證明Rt△PAE∽R(shí)t△PGF,則有==,的值是定值,不變化;
②若△DMF為等腰三角形,可能有三種情形,需要分類討論,避免漏解.
解答:解:(1)∵拋物線y=mx2-x+n經(jīng)過(guò)原點(diǎn),∴n=0.
∵對(duì)稱軸為直線x=2,∴-=2,解得m=
∴拋物線的解析式為:y=x2-x.

(2)①的值不變.理由如下:
如答圖1所示,過(guò)點(diǎn)P作PG⊥x軸于點(diǎn)G,則PG=AO=2.

∵PE⊥PF,PA⊥PG,∴∠APE=∠GPF.
在Rt△PAE與Rt△PGF中,
∵∠APE=∠GPF,∠PAE=∠PGF=90°,
∴Rt△PAE∽R(shí)t△PGF.
==
②存在.
拋物線的解析式為:y=x2-x,
令y=0,即x2-x=0,解得:x=0或x=4,∴D(4,0).
又y=x2-x=(x-2)2-1,∴頂點(diǎn)M坐標(biāo)為(2,-1).
若△DMF為等腰三角形,可能有三種情形:
(I)FM=FD.如答圖2所示:

過(guò)點(diǎn)M作MN⊥x軸于點(diǎn)N,則MN=1,ND=2,MD===
設(shè)FM=FD=x,則NF=ND-FD=2-x.
在Rt△MNF中,由勾股定理得:NF2+MN2=MF2,
即:(2-x)2+1=x2,解得:x=,
∴FD=,OF=OD-FD=4-=
∴F(,0);
(II)若FD=DM.如答圖3所示:

此時(shí)FD=DM=,∴OF=OD-FD=4-
∴F(4-,0);
(III)若FM=MD.
由拋物線對(duì)稱性可知,此時(shí)點(diǎn)F與原點(diǎn)O重合.
而由題意可知,點(diǎn)E與點(diǎn)A重合后即停止運(yùn)動(dòng),故點(diǎn)F不可能運(yùn)動(dòng)到原點(diǎn)O.
∴此種情形不存在.
綜上所述,存在點(diǎn)F(,0)或F(4-,0),使△DMF為等腰三角形.
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,難度不大.試題的背景是圖形的旋轉(zhuǎn),需要對(duì)旋轉(zhuǎn)的運(yùn)動(dòng)過(guò)程有清楚的理解;第(3)問(wèn)主要考查了分類討論的數(shù)學(xué)思想,需要考慮全面,避免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對(duì)稱軸是x=1,并且經(jīng)過(guò)(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案